Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22079-22084    https://doi.org/10.11896/cldb.20070312
  无机非金属及其复合材料 |
油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响
权长青1, 焦楚杰1, 杨云英2, 郭伟3
1 广州大学土木工程学院,广州 510006
2 广东石油化工学院建筑工程学院,茂名 525000
3 珠海春禾新材料研究院有限公司,珠海 519000
Effect of Oil Shale Residue on Compressive Strength and Chloride Corrosion Resistance of Concrete
QUAN Changqing1, JIAO Chujie1, YANG Yunying2, GUO Wei3
1 School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
2 Architecture and Civil Engineering Institute, Guangdong University of Petrochemical Technology, Maoming 525000, China
3 Zhuhai Chunhe New Material Research Institute Co.,Ltd., Zhuhai 519000, China
下载:  全 文 ( PDF ) ( 2764KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 油页岩经干馏或燃烧后留下大量油页岩渣(OSR),OSR的堆弃占用土地和污染环境。以OSR干馏渣为粗骨料制备了油页岩渣混凝土(OSRC),测试了其工作性能、微观结构、抗压强度和氯离子渗透性能。试验结果表明,OSRC的工作性能、力学性能和抗氯离子侵蚀性能均随油页岩渣取代率(Vr)的增加而降低,Vr为25%和43%时,OSRC的立方体抗压强度分别为29.9 MPa和25.5 MPa,氯离子渗透性能评价分别为很低和低。Vr大于50%时,OSRC的通电量随Vr的提高而快速增加。通过微观形貌测试发现,离OSR与界面过渡区(ITZ)界线越远,ITZ中的钙矾石晶体越少,水化硅酸钙凝胶越多,但氢氧化钙晶体较少,OSR具有“返水”特性。OSRC的受压破坏形态为OSR折断且断面平整,天然骨料周边的水泥砂浆剥落。OSR和ITZ是OSRC的薄弱区域,是后续研究之关键。OSR等多孔废弃物可以用作混凝土的填充料和内养护材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
权长青
焦楚杰
杨云英
郭伟
关键词:  油页岩渣  混凝土  微观结构  抗压强度  抗氯离子侵蚀    
Abstract: Ahuge amount of oil shale residue is left after retorting or burning of oil shale. The dumping of oil shale residue occupies land resources and seriously pollutes the environment. Oil shale residue concrete(OSRC) was prepared with oil shale retort residue as coarse aggregate. The workability, microstructure, compressive strength and chloride ion permeability of OSRC were tested. The results showed that the workability, mechanical properties and chloride corrosion resistance of OSRC decrease with the increase of oil shale residue replacement(Vr). When Vr is 25% and 43%, the cubic compressive strength of OSRC is 29.9 MPa and 25.5 MPa, and the chloride ion permeability is respectively evaluated as very low and low. While Vr is greater than 50%, the electric flux of OSRC increases rapidly with the increase of Vr, so 50% is the critical Vr of OSRC chloride ion permeability. It was found that the farther away from the boundary between the OSR and the interface transition zone (ITZ), the fewer ettringite crystals and more calcium silicate hydrate gel in ITZ, and there is very little calcium hydroxide crystals in whole ITZ. OSR has water absorption and desorption characteristics. In addition, the compressive failure mode of OSRC is OSR fracture with smooth fracture surface and cement mortar spalling around natural aggregate. Finally, OSR and ITZ are the weak areas of OSRC, which are the key to the follow-up research. And porous wastes such as OSR could be used as concrete fillers and internal curing materials.
Key words:  oil shale residue    concrete    microstructure    compressive strength    chloride corrosion resistance
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TU528  
  X754  
基金资助: 国家自然科学基金(52078148;51778158);广东省水利科技创新重点项目(2017-32);广州大学研究生创新研究资助计划项目(2019GDJC-D14);广东石油化工学院自然科学研究项目(2017qn33);茂名市科技计划项目(2017306)
通讯作者:  jiaochujie@sina.com   
作者简介:  权长青,博士研究生,工程师。2016年6月毕业于广州大学,获工学硕士学位,专业为防灾减灾工程及防护工程,2018年开始在广州大学攻读结构工程专业博士学位。自2013年9月开始,主要从事高性能混凝土与固废资源化利用的研究,参与了2个国家自然科学基金项目。发表论文10余篇,其中EI收录3篇、北大核心5篇。获日本授权发明专利2项。
焦楚杰,广州大学,教授,博士研究生导师。2004年博士毕业于东南大学结构工程专业(师从孙伟院士研究钢纤维混凝土)。主要研究方向为高性能混凝土与固废资源化利用。主持国家自然科学基金5项,获广东省科技进步二等奖和华夏建设科学技术三等奖各1项,在科学出版社出版专著1本,获发明专利7项(其中日本授权发明专利2项)、实用新型专利7项、计算机软件著作权1项,在SCI、EI、ISTP、核心学术刊物和论文集上发表论文138篇。
引用本文:    
权长青, 焦楚杰, 杨云英, 郭伟. 油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响[J]. 材料导报, 2021, 35(22): 22079-22084.
QUAN Changqing, JIAO Chujie, YANG Yunying, GUO Wei. Effect of Oil Shale Residue on Compressive Strength and Chloride Corrosion Resistance of Concrete. Materials Reports, 2021, 35(22): 22079-22084.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070312  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22079
1 Hou J L, Ma Y, Li S Y, et al. Chemical Industry and Engineering Progress, 2015(5), 1183(in Chinese).
侯吉礼, 马跃, 李术元, 等. 化工进展, 2015(5), 1183.
2 Dyni J R. Oil Shale, 2003, 20(3), 193.
3 Hasan M A. Oil Shale, 2006, 23(2), 135.
4 Wang F L. Nonferrous Metals, 2000, 52(4), 149(in Chinese).
王福良. 有色金属, 2000, 52(4), 149.
5 Zheng H, Hu S, Yan C J, et al. Non-Metallic Mines, 2007, 30(6), 29(in Chinese).
郑辉, 胡珊, 严春杰, 等. 非金属矿, 2007, 30(6), 29.
6 Feng Z Y,Li Y,Xue X X, et al. Mining and Metallurgical Engineering, 2008, 28(4), 53(in Chinese).
冯宗玉, 李勇, 薛向欣, 等.矿冶工程,2008,28(4), 53.
7 Bai J R,Wang Q,Chen Y,et al. Acta Scientiae Circumstantiae, 2008,28(10), 2156(in Chinese).
柏静儒, 王擎, 陈艳, 等. 环境科学学报, 2008, 28(10), 2156.
8 Xu Y M, He D M, Shi J W, et al. Oil Shale, 2012, 29(1), 36.
9 Nicolini J, Pereira B F, Pillon C N, et al. Journal of Analytical and Applied Pyrolysis, 2011, 90(2), 112.
10 Shawabkeh R. Process Safety & Environmental Protection, 2009, 87(4), 261.
11 Quan C Q, Yang Y Y, Jin R H, et al. Journal of Petrochemical Universities, 2018, 31(3), 22(in Chinese).
权长青, 杨云英, 金仁和, 等. 石油化工高等学校学报, 2018, 31(3), 22.
12 Deng J P, Zhang M H, Li Z L. Journal of Jilin University(Earth Science Edition), 2006(6), 1031(in Chinese).
邓家平, 张明华, 李泽林, 等. 吉林大学学报(地球科学版), 2006(6), 1031.
13 Wang Z G, Mu J C, Xi H F, et al. New Building Materials, 2013(4), 34(in Chinese).
王志刚, 穆建春, 习会峰, 等.新型建筑材料, 2013(4), 34.
14 Pei C, Zhang G Y, Li W X, et al. New Building Materials, 2016, 43(8), 106(in Chinese).
裴闯, 张光义, 李文秀, 等. 新型建筑材料, 2016, 43(8), 106.
15 Gorokhovskii A V, Gorokhovskii V A, Mescheryakov D V, et al. Glass & Ceramics, 2002, 59(5-6), 191.
16 Marangoni M, Ponsot I, Kuusik R, et al. Advances in Applied Ceramics, 2014, 113(2), 120.
17 Smadi M M, Haddad R H. Cement & Concrete Composites, 2003, 25(1), 43.
18 Al-Otoom A Y. Cement & Concrete Composites, 2006, 28(1), 3.
19 Raado L M, Tuisk T, Rosenberg M, et al. Oil Shale,2011,28(4),507.
20 Feng X P, Niu X L, Bai X, et al. International Journal of Mining Science and Technology, 2007, 17(4), 498.
21 Luo F, Shi C L, Wei C D, et al. Non-Metallic Mines, 2016, 39(5), 58(in Chinese).
雒锋, 时成林, 魏存弟, 等. 非金属矿, 2016, 39(5), 58.
22 Chen L J, Kong L W, Huang D X, et al. Journal of Building Materials, 2010,13(6), 841(in Chinese).
陈立军, 孔令炜, 黄德馨, 等.建筑材料学报, 2010,13(6), 841.
23 Raado L M, Hain T, Kuusik E R, et al. Oil Shale, 2014, 31(2),147.
24 Wang C Q, Lin X Y, He M, et al. Journal of Hazardous Materials, 2017, 338,410.
25 Wang C Q, Lin X Y, Wang D, et al. Construction & Building Materials, 2018, 162,359.
26 Nov S, Cohen H, Knop Y. Israel Journal of Chemistry, 2020, 60, 638.
27 Su D G, Yang D S. Journal of South China University of Technology(Na-tural Science Edition), 1995(2), 139(in Chinese).
苏达根, 杨东生. 华南理工大学学报(自然科学版), 1995(2), 139.
[1] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 汪苏平, 汪源, 胡志豪, 潘阳, 胡传山, 李正平, 高慧敏, 文轩. 乳液聚合法制备降黏型聚羧酸减水剂[J]. 材料导报, 2021, 35(z2): 163-166.
[4] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[5] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[6] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[7] 梁晓前, 黄榜彪, 黄秉章, 杨雷铭, 孙文贤, 林通敏, 任志强, 李有的, 刘灏. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(z2): 200-204.
[8] 韩向朝, 潘毅, 谢雨冬, 张旋, 郝哲昕, 钱春香. 无人机图像采集法对清水混凝土外观质量评价的研究[J]. 材料导报, 2021, 35(z2): 205-212.
[9] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[10] 唐占荣, 杨耀国, 叶海龙, 康海平. 高盐碱土壤对混凝土电杆腐蚀的影响分析[J]. 材料导报, 2021, 35(z2): 224-227.
[11] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[12] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[13] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[14] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[15] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed