Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20110163-6    https://doi.org/10.11896/cldb.20110163
  无机非金属及其复合材料 |
超高性能混凝土早期600 ℃抗爆裂性能研究
吴建东1, 郭丽萍1,2,3, 曹园章1, 费香鹏1
1 东南大学材料科学与工程学院,南京 211189
2 江苏省土木工程材料重点实验室,南京 211189
3 江苏省先进土木工程材料协同创新中心,南京 211189
The Performance of Ultra-high Performance Concrete Exposed to 600 ℃ at Early Stage
WU Jiandong1, GUO Liping1,2,3, CAO Yuanzhang1, FEI Xiangpeng1
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, China
3 Collaborative Innovation Center for Advanced Civil Engineering Materials, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 14142KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)是一种先进的水泥基材料,具有超高强度、韧性和耐久性,已被广泛应用于工程结构中。然而,在高温条件下,UHPC致密的微观结构和极低的渗透性,使其极易发生爆裂剥落现象,进而影响构件的使用寿命。本工作采用钢纤维(ST)和聚丙烯(PP)纤维混杂的方式研究了UHPC早期力学性能和抗渗性能,并利用X射线衍射仪(XRD)、同步热分析仪(TG)、扫描电子显微镜(SEM)、压汞(MIP)等测试方法研究了UHPC的早期抗高温爆裂剥落的机理。结果表明,掺加体积分数为0.4%的聚丙烯纤维可以有效抑制UHPC在早期的高温(600 ℃)爆裂行为;高温加热后,蒸汽养护下的UHPC力学性能比标准养护下的表现更加优异,且相比于高温前,蒸汽养护下的抗压强度和弯曲强度损失量分别为15.1%和30.9%,而标准养护下的抗压强度和弯曲强度损失量分别为18.5%和26.9%;高温后的抗渗性能满足P5等级;蒸汽养护促进了UHPC早期内部水泥水化和矿物掺合料的火山灰反应,生成更多的水化产物,且消耗了更多的游离水;高温加热后的UHPC内部结构中,通过PP纤维熔化留下的孔道和基体中水化产物的收缩、分解引起的孔隙粗化可对水蒸汽进行泄压,从而避免UHPC在早期进行高温后发生爆裂的情况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴建东
郭丽萍
曹园章
费香鹏
关键词:  超高性能混凝土  养护方式  高温处理  微观结构  机理分析    
Abstract: Ultra-high performance concrete (UHPC) is an advanced cement-based material with ultra-high strength, toughness, and durability, and has been widely used in engineering structures. However, underexposed to high-temperature conditions, UHPC with dense microstructure and extremely low permeability makes it prone to explosive spalling, which in turn affects the service life of the components. In this work, the early mechanical properties and impermeability properties of UHPC were investigated by mixing steel fiber (SF) and polypropylene (PP) fiber, and X-ray diffractometer (XRD), simultaneous thermal analyzer (TG), scanning electron microscope (SEM) and mercury injection (MIP) were utilized to determine the mechanism of UHPC exposed to high temperature at an early stage. The results show that the addition of 0.4% PP fiber can effectively suppress the early high temperature (600 ℃) burst behavior of UHPC; after exposure to high temperature, the mechanical properties of UHPC under steam curing are better than those under standard curing, and compared to properties before exposure to high temperature, the compressive strength and flexural strength loss under steam curing were 15.1% and 30.9%, respectively, while those under standard curing were 18.5% and 26.9%, respectively; the impermeability exposed to high temperature meets the P5 level; steam curing promotes the early internal cement hydration and the pozzolanic reaction of mineral admixtures of UHPC, generating more hydration products, and consuming more free water; in the internal structure of UHPC exposed to high temperature, the pores left by the melting of PP fibers and matrix pores increase to relieve the pressure of water vapor, to prevent UHPC from bursting after high temperature in the early stage.
Key words:  ultra-high performance concrete    curing methods    exposure to high temperature    microstructure    mechanism analysis
发布日期:  2022-02-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51778133;51739008)
通讯作者:  guoliping691@163.com   
作者简介:  吴建东,2018年6月毕业于南京工业大学,获得硕士学位。现为东南大学材料科学与工程学院博士研究生,主要从事超高延性水泥基复合材料的研究。
郭丽萍,博士,教授,博士研究生导师。主要研究方向有超高延性水泥基复合材料、混凝土耐久性、固废物再生自清洁无机涂层。主持国家自然科学基金和国家973项目。
引用本文:    
吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
WU Jiandong, GUO Liping, CAO Yuanzhang, FEI Xiangpeng. The Performance of Ultra-high Performance Concrete Exposed to 600 ℃ at Early Stage. Materials Reports, 2022, 36(3): 20110163-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110163  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20110163
1 Zhang Y F, Effect of sulfur on the hydration of calcium aluminate cement and the properties of castable. Ph.D. Thesis, Wuhan University of Science and Technology, China, 2015 (in Chinese).
张业范. 硫含量对铝酸盐水泥水化过程及浇注料性能的影响.博士学位论文, 武汉科技大学, 2015.
2 Zhang Y S, Sun W, Liu S F, et al. Cement and Concrete Composites, 2008, 30(9), 831.
3 Yoo D Y, Banthia N. Cement and Concrete Composites, 2016, 73, 267.
4 Wu X, Zhang X. Journal of Building Structures, 2018, 39 (10), 156.
5 Shi C, Wu Z, Xiao J, et al. Construction and Building Materials, 2015, 101, 741.
6 Hooton R, Titherington M. Cement and Concrete Research, 2004, 34, 1561.
7 Abbas S, Soliman A M, Nehdi M L. Construction and Building Materials, 2015, 75, 429.
8 Yang S L, Millard S G, Soutsos M N, et al. Construction and Building Materials, 2009, 23 (6), 2291.
9 Shi C J, Wu Z M, Xiao J F, et al. Construction and Building Materials, 2015, 101,741.
10 Wang D H, Shi C J, Wu Z M, et al. Construction and Building Mate-rials, 2015, 96, 368.
11 Bangi M R, Horiguchi T. Cement and Concrete Research, 2011, 41(11), 1150.
12 Li Y, Pimienta P, Pinoteau N, et al. Cement and Concrete Composites, 2019, 99, 62.
13 Rivaz B. Tunnels Ouvrages Souterr No, 2006, 198, 367.
14 Tai Y, Pan H, Kung Y. Nuclear Engineering and Design, 2011, 241(7), 2416.
15 Bei S, Zhi X L. Case Studies in Construction Materials, 2016, 4, 146.
16 Xiong M X, Richard L J Y. Materiales de construcción, 2015, 65(320), 71.
17 Kalifa P, Chene G, Galle C,Cement and Concrete Research, 2001, 31(10), 1487.
18 Han C G, Hwang Y S, Yang S H, et al. Cement and Concrete Research, 2005, 35 (9), 1747.
19 Ding Y N, Zhang C, Cao M L, et al. Construction and Building Mate-rials, 2016, 113,456.
20 Bangi M R, Horiguchi T. Cement and Concrete Research, 2012, 42(2), 459.
21 Bilodeau A, Kodur V K R, Hoff G C. Cement and Concrete Composites, 2004, 26, 163.
22 Noumowé A. Cement and Concrete Research, 2005, 35, 2192.
23 Ozawa M, Morimoto H. Construction and Building Materials, 2014, 71, 83.
24 Li Y, Tan K H, Yang E H. Construction and Building Materials, 2018, 169, 629.
25 Mindeguia J C, Pimienta P, Noumowé A, et al. Cement and Concrete Research, 2010, 40 (3), 477.
26 Ju Y, Wang L, Liu H B, et al. Chinese Science Bulletin, 2015, 60(23), 2022.
27 Lee N K, Koh K T, Park S H, et al. Cement and Concrete Research, 2017, 102, 109.
28 Niu X J, Nie Y, Peng G F, et al. J Chin Ceram Soc, 2020, 48(8), 1212 (in Chinese).
牛旭婧, 乜颖, 朋改非, 等.硅酸盐学报, 2020, 48(8), 1212.
29 Peng G, Yang W, Zhao J, et al. Cement and Concrete Research, 2006, 36, 723.
[1] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[2] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[3] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[4] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[5] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[6] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[7] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[8] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[9] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[10] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[11] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[12] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[13] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[14] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[15] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed