Please wait a minute...
材料导报  2022, Vol. 36 Issue (4): 20120072-6    https://doi.org/10.11896/cldb.20120072
  高分子与聚合物基复合材料 |
喹啉沥青的合成及其富氮衍生炭的微观结构研究
范青杰, 杨子健, 赖仕全*, 岳莉, 朱亚明, 赵雪飞
辽宁科技大学化学工程学院,辽宁 鞍山 114051
Synthesis of Quinoline Pitch and Microstructures of Its Nitrogen-rich Derived Carbons
FAN Qingjie, YANG Zijian, LAI Shiquan*, YUE Li, ZHU Yaming, ZHAO Xuefei
School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
下载:  全 文 ( PDF ) ( 5289KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 富氮炭材料作为一种性能优异的功能材料,在化学催化、吸附分离、电极材料、储氢、染料废水处理等领域拥有广阔的应用前景。而富氮沥青由于原料丰富、制备方法相对简单且易大规模生产,作为一种优秀的富氮前驱体近年来受到人们的青睐。本工作以含氮单体喹啉为原料,5%(质量分数)的AlCl3为催化剂,采用自升压法合成了四种喹啉沥青(QLP),利用傅立叶变换红外光谱、凝胶渗透色谱、热重分析仪对四种QLP的理化性质进行表征。通过元素分析、PLM、Raman和XRD研究了喹啉沥青衍生炭(CQLP)的氮含量及微观结构随炭化温度的变化情况。结果表明,四种QLP的收率都在90%左右,软化点在120 ℃左右,灰分小于2.5%,质均分子量为360~390,数均分子量为250~260。四种QLP的芳香指数(Iar)为0.55~0.69,邻位取代指数(Ios)为0.52~0.72,支链化指数(CH3/CH2)为0.11~0.23,750 ℃下的残炭率在29.0%~50.7%,其大小取决于合成条件。QLP的氮含量为8.22%,其氮含量随炭化温度升高呈先增加后略有下降的变化趋势,750 ℃下获得的CQLP具有最高的氮含量,为9.70%。三种CQLP的显微结构都以片状、纤维状组织为主,其含量分别占50%~60%和10%~30%,表现出良好的石墨化性。随炭化温度升高,CQLP的炭微晶尺寸增大,层间距减小,但规整性下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范青杰
杨子健
赖仕全
岳莉
朱亚明
赵雪飞
关键词:  富氮炭材料  喹啉沥青  理化性质  微观结构    
Abstract: Nitrogen-rich carbon materialas a functional material with excellent performance has broad application prospects in chemical catalysis, adsorption and separation, electrode materials, hydrogen storage, dye wastewater treatment and other fields. Recently, nitrogen-rich pitch as an excellent nitrogen-rich precursor has been favored by many researchers because of its rich raw materials, relatively simple preparation method and easy mass production. In this work, four quinoline pitches were synthesized by self-rising pressure method using the nitrogen-containing mo-nomer quinoline as raw material and 5%(mass fraction) AlCl3 as catalyst. The physicochemical properties of four QLPs were characterized by Fourier transform infrared spectroscopy, gel permeation chromatography and thermogravimetric analyzer. The change of nitrogen content and microstructure of quinoline pitch-derived carbon (CQLP) with carbonization temperature was studied by elemental analysis, polarized light microscopy (PLM), Raman spectroscopy and X-ray diffraction (XRD) technique. The results showed that the yield of the four QLPs was all about 90%, the softening point was around 120 ℃, the ash content was less than 2.5%, the mass average molecular weight was 360—390, and the number average molecular weight was 250—260. The aromatic index (Iar) of the four QLPs was 0.55—0.69, the ortho-substitution index (Ios) was 0.52—0.72, the branched chain index (CH3/CH2) was 0.11—0.23, and the residual carbon yields at 750 ℃ were in the range of 29.0%—50.7%, depending on the synthesis conditions. The nitrogen content of QLP was 8.22%, and its nitrogen content increased first and then decreased slightly with the increase of carbonization temperature. The CQLP obtained at 750 ℃ had the highest nitrogen content of 9.70%. The microstructure of the three CQLPs carbon was mainly lamellar and fibrous textures, which account for about 50%—60% and 10%—30% respectively, showing good graphitization. With the increase of carbonization temperature, the carbon microcrystal size of CQLP increased, while the layer spacing decreased, but the regularity decreased.
Key words:  nitrogen-rich carbon material    quinoline pitch    physicochemical properties    microstructure
出版日期:  2022-02-25      发布日期:  2022-02-28
ZTFLH:  TQ522.65  
基金资助: 国家自然科学基金(U1361126);辽宁省自然科学基金(20180551218)
通讯作者:  yuelilsq@163.com   
作者简介:  范青杰,硕士研究生,现就读于辽宁科技大学化工学院,材料与化工专业,主要从事沥青基炭硅复合材料的制备与性能研究。目前以第一作者已发表期刊论文1篇。
赖仕全,教授,硕士研究生导师。2005年6月毕业于复旦大学,获得高分子化学与物理博士学位,同年加入辽宁科技大学化工学院工作至今,主要从事煤沥青、合成沥青、中间相沥青及沥青基新型材料的制备与应用研究。在国内外期刊发表论文50多篇,申请发明专利10余项。
引用本文:    
范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
FAN Qingjie, YANG Zijian, LAI Shiquan, YUE Li, ZHU Yaming, ZHAO Xuefei. Synthesis of Quinoline Pitch and Microstructures of Its Nitrogen-rich Derived Carbons. Materials Reports, 2022, 36(4): 20120072-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120072  或          http://www.mater-rep.com/CN/Y2022/V36/I4/20120072
1 Mochida I, Shimizu K, Koral Y, et al. Carbon, 1988, 26(6), 843.
2 Mochida I, Koraia Y, Kua C H, et al. Carbon, 2000, 38(2), 305.
3 Dumont M, Dourges M A, Bourrat X, et al. Carbon, 2005, 43(11), 2277.
4 Mochida I, Yoon S H, Qiao W M. Journal of the Brazilian Chemical Society, 2006, 17(6), 1059.
5 Zhang Bo, Song Huaihe, Chen Xiaohong, et al. Journal of Analytical and Applied Pyrolysis, 2013, 104, 433.
6 Han M X, Lai S Q, Liu X N, et al. Carbon Techniques, 2014(5), 18(in Chinese).
韩明喜, 赖仕全, 刘兴南, 等. 炭素技术, 2014(5), 18.
7 Chen S L, Guo J G, Zhou M H, et al. Journal of Hunan University, 2017(6), 81(in Chinese).
陈石林, 郭建光, 周娩红, 等.湖南大学学报, 2017(6), 81.
8 Hong H Q, Deng S, Lai S Q, et al. Chemical Industry and Engineering Progress, 2020, 39(7), 2724(in Chinese).
洪海球, 邓宋, 赖仕全, 等.化工进展, 2020, 39(7), 2724.
9 Fernández A L, Granda M, Bermejo J, et al. Carbon, 1999, 37( 8), 1247.
10 Guo Y S, Zha Q F, Wu M B. Carbon techniques, 2002(2), 11(in Chinese).
郭燕生, 查庆芳, 吴明铂.炭素技术, 2002(2), 11.
11 Li S B, Sun Q Q, Wang Y W, et al. New chemical materials, 2015, 43(2), 7(in Chinese).
李士斌, 孙启乾, 王玉伟, 等.化工新型材料, 2015, 43(2), 7.
12 Yang K S, Kim Y A, Shin K S, et al. Polymer (Korea), 1997, 21(4), 532.
13 Watanabe F, Ishida S, Korai Y, et al. Carbon, 1999, 37(6), 961.
14 Wang Y G, Korai Y, Mochida I, et al. Carbon, 2001, 39(11) 1627.
15 Zhai Y P, Dou Y Q, Zhao D Y, et al. Advanced materials, 2011, 23(42), 4828.
16 Qie L, Chen W M, Wang Z H, et al. Advanced Materials, 2012, 24(15), 2047.
17 Shen W Z, Fan W B. Journal of Materials Chemistry A, 2013, 1(4), 999.
18 Zhong C, Gong S, Jin L, et al. Materials Letters, 2015, 156, 1.
19 Yue D, Yang J X, Sun B, et al. New Carbon Materials, 2020, 35(1), 50(in Chinese).
乐丹, 杨建校, 孙兵, 等. 新型炭材料, 2020, 35(1), 50.
20 Yang W, Li R, Hou L Q, et al. New Carbon Materials, 2020, 35(3), 253(in Chinese).
杨旺, 李瑞, 候利强, 等.新型炭材料, 2020, 35(3), 253.
21 Mochida I, An K H, Korai Y. Carbon, 1995, 33(8), 1069.
22 Mochida I, Sakanishi K, Korai Y, et al. Carbon, 1996, 34(5), 601.
23 Mochida I, Ku C H, Yoon S H, et al. Carbon, 1999, 37(2), 323.
24 Xiao N, Song J W, Wang Y W, et al. Carbon, 2018, 128, 201.
25 Minto E, Ryo I, Nobuko Y, et al. Electrochemistry, 2020, 88(3), 88.
26 Gargiulo V, Apicella B, Alfè M, et al. Energy & Fuels, 2015, 29, 5714.
27 Guillen M D, Iglesias M J, Dominguez A, et al. Energy & Fuels, 1992, 6(4), 518.
28 Yue L, Chen Z, Lai S Q, et al. Spectroscopy and Spectral Analysis, 2020, 40(8), 2468(in Chinese).
岳莉, 陈召, 赖仕全, 等.光谱学与光谱分析, 2020, 40(8), 2468.
29 Li X, Hayashi J I, Li C Z. Fuel, 2006, 85(12/13), 1700.
30 Reich S, Thomsen C. Philosophical Transactions of the Royal Society A, 2004, 362, 2271.
31 Yue L, Zhu Y M, Gao L J, et al. Materials Reports B:Research Papers, 2020, 34(4), 08077(in Chinese).
岳莉, 朱亚明, 高丽娟, 等. 材料导报:研究篇,2020,34(4),08077.
32 Lu L, Sahajwalla V, Kong C, et al. Carbon, 2001, 39(12), 1821.
33 Manoj B, Kunjomana A G. International Journal of Electrochemical Science, 2012, 7(4), 3127.
[1] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[2] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[3] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[4] 孙志雅, 孟宇航, 杨华明. 黏土矿物基载药体系的研究进展[J]. 材料导报, 2022, 36(2): 20110152-10.
[5] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[6] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[7] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[8] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[9] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[10] 李文娟, 廖璇, 熊向源, 龚妍春, 李资玲. Pluronic修饰脂质体的研究进展[J]. 材料导报, 2021, 35(z2): 612-615.
[11] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[12] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[13] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[14] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[15] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed