Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9168-9173    https://doi.org/10.11896/cldb.19090100
  无机非金属及其复合材料 |
固化土微观测试评价方法述评
倪航天, 黄煜镔*
重庆大学土木工程学院,重庆 400045
Review on Microstructure Evaluation Methods of Solidified Soil
NI Hangtian, HUANG Yubin*
School of Civil Engineering, Chongqing University, Chongqing 400045, China
下载:  全 文 ( PDF ) ( 4150KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 土是一种最基本的工程材料,而天然土体的性质往往难以满足工程需要。近年来,因土体固化/稳定(S/S技术)后具有适用范围广、强度易改善等优点,目前固化土已得到广泛关注与应用。在固化土体的过程中,涉及了复杂物化反应,为认清固化机理、评价固化效果、获得改进措施,有必要完善微观研究固化土的方法,建立相应的测试评价体系。
目前,固化土的微观测评主要集中在物质组成分析和微观结构分析两部分。相应的测试方法主要包括X射线衍射(XRD)分析、扫描电镜-能谱分析系统(SEM/EDX)、电子计算机断层扫描技术(CT)、压汞法(MIP)、电阻率法、核磁共振(NMR)等技术。然而,这些主流测试方法用于固化土微观测评仍存在一些问题。这些弊端可能是技术不够成熟所致,或是源于对测试原理与固化机理关系的认识不清,亦可能是方法本身固有的弊端,因此对于当前主流测试方法,仍有广阔的空间去改进、探索与发展。
通过合理的试验设计能够获得XRD包含的潜在信息,并解决定量问题;通过对SEM的数据分析以及和其他技术的配合使用,可以在一定程度上掌握固化土微观的三维形貌及图像内微区的物质信息;通过对CT技术的改进,能够在无损的前提下,实现固化土微观结构的三维重构,测评固化效果;通过对MIP样本制作过程的优化与模型方程的改进,可以在一定程度上避免“瓶颈孔”、“遮蔽孔”等问题,减小试验误差;通过对电阻率法的不断优化,能够实现对固化土快捷、无损且连续的大区域现场评价;通过对NMR测试过程与反演过程的研究,有助于提高检测精度,降低对样本的要求。
本文综述了当前固化土研究中常用的微观测试方法,重点分析了固化土研究中这些方法的常见问题,并总结了当前主要的改进措施,指出准确理解方法的机理是应用的基础,并提出对未来固化土微观研究发展方向及研究模式的展望,以期为固化土的微观测试研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪航天
黄煜镔
关键词:  固化土  微观结构  测试评价  X射线衍射分析  扫描电镜  计算机断层扫描    
Abstract: Soil is one of the most basic engineering materials, but the nature of soil is often difficult to meet the needs of engineering. In recent years, due to the advantages of wide application range and easy improvement of strength after soil solidification/stabilization (S/S technology), solidified soil has been widely concerned and applied. The process of solidifying soil involves complicated physical and chemical reactions. In order to recognize the solidification mechanism, evaluate the solidification effect and obtain improvement measures, it is necessary to perfect the microscopic method of studying solidified soil and establish the corresponding testing and evaluation system.
At present, the microscopic evaluation of solidified soil mainly focuses on the analysis of material composition and microstructure two parts. The corresponding testing methods mainly include X-ray diffraction analysis (XRD), scanning electron microscope-energy spectrum analysis system (SEM/EDX), electronic computed tomography (CT), mercury intrusion method (MIP), resistivity method, nuclear magnetic resonance (NMR) and other technologies. However, there are still some problems in the application of these mainstream testing methods to the microscopic evaluation of solidified soil. These disadvantages may be caused by immature technology, or due to unclear understanding of the relationship between testing principle and curing mechanism, or may be inherent disadvantages of the method itself. Therefore, there is still a broad space for improvement, exploration and development of current mainstream testing methods.
Potential information contained in XRD can be obtained through reasonable experimental design, and quantitative problems can be solved. Through the analysis of SEM data and the cooperation with other technologies, the micro-three-dimensional morphology of solidified soil and the material information of micro-regions in the image can be mastered to a certain extent. Through the improvement of CT technology, three-dimensional reconstruction of solidified soil microstructure and evaluation of solidification effect can be realized without damage. Through optimization of MIP sample making process and improvement of model equation, problems such as "bottleneck hole" and "shielding hole" can be avoided to a certain extent, and test error can be reduced. Through continuous optimization of resistivity method, it can realize fast, nondestructive and conti-nuous large-area site evaluation of solidified soil. Through the study of NMR testing process and inversion process, it will help to improve the detection accuracy and reduce the sample requirements.
In this paper, the microscopic testing methods commonly used in the research of solidified soil are summarized, the common problems of these methods in the research of solidified soil are analyzed emphatically, and the main improvement measures at present are summarized. It is pointed out that an accurate understanding of the mechanism of the method is the basis of application, and the development direction and research mode of micro-research on solidified soil in the future are put forward, so as to provide reference for micro-test research on solidified soil.
Key words:  solidified soil    microstructure    evaluation    X-ray diffraction    scanning electron microscope    computed tomography
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TU411  
通讯作者:  huangyb1974@163.com   
作者简介:  倪航天,2017年6月毕业于东北林业大学,获得工学学士学位。现为重庆大学土木工程学院硕士研究生。目前主要研究领域为道路与铁道工程。
黄煜镔,重庆大学土木工程学院副教授。2002年毕业于重庆大学材料学专业,获博士学位,同济大学博士后、美国西北大学访问学者。主要研究领域是新型路面材料(再生材料、固体废弃物再生)、建筑材料(高性能混凝土、高性能水泥基材料)以及建筑功能材料(电磁屏蔽材料、植被恢复材料)。
引用本文:    
倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
NI Hangtian, HUANG Yubin. Review on Microstructure Evaluation Methods of Solidified Soil. Materials Reports, 2021, 35(9): 9168-9173.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090100  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9168
1 Shen Z J. Journal of Geotechnical Engineering,1996,1(8),95(in Chinese).
沈珠江.岩土工程学报,1996,1(8),95.
2 Huang Q D. The soil-water characteristic curve model based on thermodynamics and soil microstructure evolution. Ph.D. Thesis, Beijing Jiaotong University, China,2017(in Chinese).
黄启迪.基于热力学与微观结构演化规律的非饱和土土水特征曲线模型.博士学位论文,北京交通大学,2017.
3 Huang X, Ning J G, Xu S, et al. Industrial Building,2006,36(7),19(in Chinese).
黄新,宁建国,许晟,等.工业建筑,2006,36(7),19.
4 Chrysochoou M. Journal of Materials in Civil Engineering,2014,26(2),288.
5 Whitfield P S, Mitchell L D. Journal of Materials Science,2003,38,4415.
6 De La Torre A G, Bruque S, Aranda M A G. Journal of Applied Crystallography,2001,2(34),196.
7 Williams P J, Joseph J, Biernacki, et al. Cement and Concrete Research,2003,33(10),1553.
8 Yang D, Zhang L. Atomic Energy Science and Technology,2016,50(4),725(in Chinese).
杨戴天杙,张丽.原子能科学技术,2016,50(4),725.
9 Sayed H B, Huat B B K, et al. Construction and Building Materials,2014,64,350.
10 Moon D H, Grubb D G, Reilly T L. Journal of Hazardous Materials,2009,168,944.
11 Fernández-Carrasco L, Claramunt J, Ardanuy M. Construction and Buil-ding Materials,2014(66),138.
12 Maheswaran S, Kalaiselvam S, Karthikeyan S S, et al. Cement and Concrete Composites,2016,66,57.
13 Liu Y. Research methods and applications of soil microstructure. Ph.D. Thesis, Tongji University, China,2003(in Chinese).
刘莹.土体微观结构研究方法及应用.博士后论文,同济大学,2003.
14 apek P, Hejtmánek V, Brabec L, et al. Transport in Porous Media,2009,76,179.
15 Moon D K, Lee J R, Grubb D G, et al. Environmental Earth Sciences,2010,61,1745.
16 Goodarzi A R, Zandi M H. Environmental Earth Sciences,2016,75,911.
17 Chen H E, Zhang J, Yan H. Bulletin of Engineering Geology and the Environment,2013,72,233.
18 Assadi A. Bulletin of Engineering Geology and the Environment,2014,73,203.
19 Xue F. Science and Technology and Engineering,2014,14(31),1671(in Chinese).
薛飞.科学技术与工程,2014,14(31),1671.
20 Wang B J, Shi B, Cai Y, et al. Geotechnical Mechanics,2008,29(1),251(in Chinese).
王宝军,施斌,蔡奕,等.岩土力学,2008,29(1),251.
21 Eulitz M, Reiss G. Journal of Structural Biology,2015,191,190.
22 Wichai S. 2D SEM images turn into 3D object models. Ph.D. Thesis, PEC University of Technology, India,2017.
23 Wang W P, Song R X, Fu X, et al. Journal of Water Conservancy and Waterway Engineering,2003(2),56(in Chinese).
王五平,宋人心,傅翔,等.水利水运工程学报,2003(2),56.
24 Yarbaş N, Kalkan E, Akbulut S. Cold Regions Science and Technology,2007,48,44.
25 Noorzad R, Mirmoradi S H. Geotextiles and Geomembranes,2010,28,386.
26 Ghazavi M, Roustaie M. Cold Regions Science and Technology,2010,61,125.
27 Ghazavi M, Roustaei M. Cold Regions Science and Technology,2013,89,22.
28 Rong H, Qian C X, Li L Z. Construction and Building Materials,2012,36,687.
29 Niu S Y, Chen P, Pan J X, et al. Optik,2015,126,202.
30 Ojeda-Magaña B, Quintanilla-Domínguez J, Ruelas R, et al. Geoderma,2014,217-218,90.
31 Houston A N, Otten W, Falconer R, et al. Geoderma,2014,217-218,90.
32 Martín-Sotoca J J, Saa-Requejo A, Grau J B, et al. Geoderma,2018,311,175.
33 Cnudde V, Boone M N. Earth-Science Reviews,2013,123,1.
34 Kyrieleis A, Titarenko V, Ibison M, et al. Journal of Microscopy,2011,241(1),69.
35 Philippe C. B, Laba M, Otten W, et al. Geoderma,2010,157,51.
36 Cloetens P, Ludwig W, Baruchel J, et al. Applied Physics Letters,1999,75(19),2912.
37 Sakellariou A, Kingston A M, Varslot T K, et al. Proceedings of Spie,2010,7804,78040P-1.
38 Bruyndoncx P, Sasov A, Liu X. In: The 10th International Conference on X-ray Microscopy. Saskatoon, Canada,2011.
39 Hapca S. Geophysical Research Abstracts,2015,17,EGU2015-14766.
40 Wang Y Z, Sheik S R, Christoph H A. Physica A,2018,493,177.
41 Fu Q Q. Journal of Chinese Electron Microscopy Society,2016,35(1),81(in Chinese).
付琴琴.电子显微学报,2016,35(1),81.
42 Bijoyendra B, Sushanta K M,Douglas V. Micron,2011,42,412.
43 Chen Y, Li D X. Silicate Bulletin,2006,25(4),198(in Chinese).
陈悦,李东旭.硅酸盐通报,2006,25(4),198.
44 Craig B L,Yousif M A, Reza J J. Cold Regions Science and Technology,2017,134,33.
45 Lemaire K, Deneele D, Bonnet S, et al. Engineering Geology,2013,166,255.
46 Meng T, Qiang Y J, Hu A F,et al. Construction and Building Materials,2017,15,775.
47 Horpibulsuk S. Construction and Building Materials,2010,24(10),2011.
48 Wang Y J, Cui Y J, Tang A M, et al. Engineering Geology,2016,202,114.
49 Gallé C. Cement and Concrete Research,2001,31,1467.
50 Jean R, Gino B, Renaud D, et al. Pure and Applied Chemistry,2012,84(1),107.
51 Giesche H. Particle & Particle Systems Characterization,2006,23,9.
52 Rigby S P, Evbuomwan I O, Watt-Smith M J, et al. Particle & Particle Systems Characterization,2006,23,82.
53 Rigby S P. Studies in Surface Science and Catalysis,2002,144,185.
54 Matthew R H, Sacha J M, Sturrock C, et al. Acta Geotechnica,2013,8,67.
55 Archie G E. Transactions of American Institute of Mining Engineers,1942,146,54.
56 Yu M. Application of resistivity and CT measurement technology in microstructure characteristic research of cement solidified soil. Master's Thesis, Southeast University, China,2007(in Chinese).
虞鸣.电阻率、CT测试技术在水泥固化土微结构特性研究中应用.硕士学位论文,东南大学,2007.
57 José L P, Ortega J M, Flor M, et al. Construction and Building Mate-rials,2016,117,47.
58 Cabeza M, Merino P, Miranda A, et al. Cement and Concrete Research,2002,32,881.
59 Cabeza M, Keddam M, Nóvoa X R. Electrochimica Acta,2006,51,1831.
60 Wen B. Study on AC impedance characteristics of sodium hydroxide cemented soil. Master's Thesis, Taiyuan University of Technology, China,2014(in Chinese).
文斌.水泥固化氢氧化钠污染土的交流阻抗特性研究.硕士学位论文,太原理工大学,2014.
61 Xu W P, Yang G H, Dong X Q. Journal of Guangxi University: Natural Science Edition,2014,39(1),132(in Chinese).
徐文攀,杨国辉,董晓强.广西大学学报:自然科学版,2014,39(1),132.
62 Dong X Q, Yang G H. Journal of Taiyuan University of Technology,2012,43(1),60(in Chinese).
董晓强,杨国辉.太原理工大学学报,2012,43(1),60.
63 Staab D A, Edil T B, Alumbaugh D L. In: GeoSupport 2004: Innovation and Cooperation in the Geo-Industry. Orlando Florida, United States,2004.
64 Liu S Y, Han L H, Du Y J. Journal of Geotechnical Engineering,2006,28(11),1921(in Chinese).
刘松玉,韩立华,杜延军.岩土工程学报,2006,28(11),1921.
65 Han L H. Study on the application of electrical resistivity method in eva-luation and reinforcement for contaminated soils. Ph.D. Thesis, Southeast University, China,2006(in Chinese).
韩立华.电阻率法在污染土评价与处理中的应与研究.硕士学位论文,东南大学,2006.
66 Li J L, Zhou K P, Zhang Y M, et al. Journal of Rock Mechanics and Geotechnical Engineering,2012,31(6),1208(in Chinese).
李杰林,周科平,张亚民,等.岩石力学与工程学报,2012,31(6),1208.
67 Zhang J Z, Xia C, Yue Q Y, et al. Water, Air, & Soil Pollution,2017,228,196.
68 Han C. Study on soil mechanics and durability of cadmium contaminated soil by inorganic hardened materials. Master's Thesis, Inner Mongolia Agricultural University, China,2017(in Chinese).
韩超.无机胶凝材料固化镉污染土力学及耐久性能研究.硕士学位论文,内蒙古农业大学,2017.
69 Cheng F Z, Lei X W, Meng Q S, et al. Journal of Chengjiang University of Science,2016,33(10),116(in Chinese).
程福周,雷学文,孟庆山,等.长江科学学院院报,2016,33(10),116.
70 Lyu Q F, Zhou G, Wang S X, et al. Rock and Soil Mechanics,2019,40(1),245(in Chinese).
吕擎峰,周刚,王生新,等.岩土力学,2019,40(1),245.
[1] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[2] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[3] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[6] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[7] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[8] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[9] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[10] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[11] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[12] 黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
[13] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[14] 王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
[15] 郑少军, 刘天乐, 蒋国盛, 李丽霞, 白世卿, 余尹飞, 全奇. 基于HYMOSTRUC3D的水泥基材料微结构变化规律研究[J]. 材料导报, 2020, 34(22): 22047-22053.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed