Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22047-22053    https://doi.org/10.11896/cldb.19090115
  无机非金属及其复合材料 |
基于HYMOSTRUC3D的水泥基材料微结构变化规律研究
郑少军, 刘天乐, 蒋国盛, 李丽霞, 白世卿, 余尹飞, 全奇
中国地质大学工程学院,非常规固井与特种加固实验室,武汉 430074
Research on Cement Hydration Microstructure Evolution Process Based on HYMOSTRUC3D Model
ZHENG Shaojun, LIU Tianle, JIANG Guosheng, LI Lixia, BAI Shiqing, YU Yinfei, QUAN Qi
Unconventional Cementing & Special Reinforcement Laboratory, Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 5174KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 现代水泥基材料大量使用矿物掺合料,使得关于水泥石微观结构演变特征的研究变得更加复杂。本实验充分考虑材料氧化物组成和含量,计算出硅酸盐水泥、粉煤灰和矿渣的水化速率参数,并代入HYMOSTRUC3D模型中建模,同时考虑水灰比和矿物掺合料的影响,建立了水泥、C-S-H、CH、水化热、孔隙率、孔径分布等随水化龄期的变化关系,获取了水泥水化过程中微观结构的演变信息。基于在HYMOSTRUC3D中所建模型获取了CH和C-S-H的含量,并与XRD测试结果和CEMHYD3D模拟结果进行了对比;考虑了CH在水泥水化过程中的产生以及与FA或BFS混配形成的水泥基材料中的消耗;并模拟研究了不同掺量的活性矿物掺合料对水泥水化放热的影响;同时,预测了水灰比对孔隙率和孔径分布的影响以及孔隙率和孔径分布随时间的变化规律。研究结果表明:HYMOSTRUC3D模拟结果与XRD实验测试结果、CEMHYD3D模拟结果整体吻合较好,验证了所计算水化速率参数和所建立模型的准确性。同时还发现,FA或BFS的掺入可消耗水泥水化产生的CH,且可有效控制水泥基材料的水化放热,掺量越大,消耗的CH越多,控热效果越明显。此外,水灰比越大的水泥浆孔隙率越大,大孔越多,孔径分布越宽。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑少军
刘天乐
蒋国盛
李丽霞
白世卿
余尹飞
全奇
关键词:  水泥水化  HYMOSTRUC3D模型  矿物掺合料  微观结构  CH含量  水化放热    
Abstract: The mineral admixtures used in modern cement-based materials make the study of the evolution characteristics of cement stone microstructures more complicated. In this paper, the oxide composition and content of the material are fully considered, and the hydration rate parameters of Portland cement (PC), fly ash (FA) and blast furnace slag (BFS) are calculated and substituted into the HYMOSTRUC3D software for modeling. With considering the influence of water-cement ratio and mineral admixture, the relationship between cement, C-S-H, CH, hydration heat, porosity, pore size distribution with the hydration age were established and the evolution of microstructure during cement hydration was obtained. The contents of CH and C-S-H were obtained based on the model established in HYMOSTRUC3D, and compared with XRD test results and CEMHYD3D simulation results. The generation of CH in cement hydration process and the consumption of cement-base materials mixed with FA or BFS were considered. And the effects of different amounts of active mineral admixtures on cement were simulated and studied. At the same time, the influence of water-cement ratio on porosity and pore size distribution and porosity and pore size distribution over time were predicted. The results show that the simulation results of HYMOSTRUC3D are in good agreement with the XRD test results and the CEMHYD3D simulation results, which verifies the calculated hydration rate parameters and the established model. The study also found that the incorporation of FA or BFS can consume CH produced by cement hydration, and can effectively control the hydration heat release of cement-based materials, the larger the dosage, the more CH consumed, and the more obvious the heat control effect. In addition, the larger the water-cement ratio, the larger the porosity of the cement stone, the more the macropore, and the wider the pore size distribution.
Key words:  cement hydration    HYMOSTRUC3D model    mineral admixtures    microstructure    CH content    heat release
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TU52  
基金资助: 国家重点研发计划项目(2016YFE0204300)
通讯作者:  liutianle2008@163.com   
作者简介:  郑少军,2016年6月毕业于中国地质大学(武汉),获得工学学士学位。现为中国地质大学(武汉)工程学院博士研究生,主要从事多场耦合作用下水泥基材料水化过程中微结构时空演变规律研究。刘天乐,中国地质大学(武汉),副教授,入选湖北省“海外优秀博士引智计划”和江苏省“双创人才计划”。2013年6月毕业于俄罗斯圣彼得堡国立矿业大学,获得钻完井工程专业博士学位。同年加入中国地质大学工程学院工作至今,主要从事水泥基材料紧密堆积、非常规固井与特种加固技术的研究。主持或参与科研项目10余项,在国内外重要期刊发表文章30余篇,以第一完成人申报中国发明专利6项、俄罗斯发明专利8项,获教育部技术发明一等奖1项、湖北省自制实验仪器二等奖1项、俄罗斯圣彼得堡青年科技奖三等奖1项。
引用本文:    
郑少军, 刘天乐, 蒋国盛, 李丽霞, 白世卿, 余尹飞, 全奇. 基于HYMOSTRUC3D的水泥基材料微结构变化规律研究[J]. 材料导报, 2020, 34(22): 22047-22053.
ZHENG Shaojun, LIU Tianle, JIANG Guosheng, LI Lixia, BAI Shiqing, YU Yinfei, QUAN Qi. Research on Cement Hydration Microstructure Evolution Process Based on HYMOSTRUC3D Model. Materials Reports, 2020, 34(22): 22047-22053.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090115  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22047
1 Shi H S, Sun Z P, Deng K, et al. Encyclopedia of concrete admixture technology, Chemical Industry Press, China, 2013(in Chinese).施惠生, 孙振平, 邓恺, 等. 混凝土外加剂技术大全, 化学工业出版社, 2013.2 Ding Q J, He Z. Materials China, 2009, 28(11), 8(in Chinese).丁庆军, 何真. 中国材料进展, 2009, 28(11), 8.3 Wang C, Yang C H, Qian J S, et al. Journal of the Chinese Ceramic Society, 2012, 40(7), 1050(in Chinese).王冲, 杨长辉, 钱觉时, 等. 硅酸盐学报, 2012, 40(7), 1050.4 Chen J, Jin N G, Jin X Y, et al. Journal of Zhejiang University (Engineering Science), 2013, 47(4), 575(in Chinese).陈军, 金南国, 金贤玉, 等. 浙江大学学报(工学版), 2013, 47(4), 575.5 Dong B Q, Zhang J, Wang Y, et al. Construction and Building Mate-rials, 2016, 119, 16.6 Madej D, Kruk A. Construction and Building Materials, 2018, 164, 94.7 Wu S Y, Yang J, Yang R C, et al. Construction and Building Materials, 2018, 178, 473.8 Kaufmann J. Cement & Concrete Composites, 2010, 32(7), 514.9 Xu R, Prodanovic M. Fuel, 2018, 225, 243.10 Hu S G, Yuan P, Wang F Z, et al. Journal of Building Materials, 2017, 20(2), 316(in Chinese).胡曙光, 袁盼, 王发洲, 等. 建筑材料学报, 2017, 20(2), 316.11 Zhu W H, Yin Y F, Jiang L H, et al. Journal of Building Materials, 2001, 4(2), 116(in Chinese).朱卫华, 印友法, 蒋林华, 等. 建筑材料学报, 2001, 4(2), 116.12 Nestle N, Galvosas P, Korger J. Cement and Concrete Research, 2007, 37(3), 398.13 Wang Y L, Zhao X H. Materials Review, 2008, 22(1), 159(in Chinese).王玉林, 赵晓华. 材料导报, 2008, 22(1), 159.14 Wei Y, Gao X, Liang S M. Acta Materiae Compositae Sinica, 2017, 34(5), 1122(in Chinese).魏亚, 高翔, 梁思明. 复合材料学报, 2017, 34(5), 1122.15 Jennings H M, Johnson S K. Journal of the American Ceramic Society, 1986, 69(11), 790.16 Breugel K V. Simulation of hydration and microstructure development of blended cements. Ph.D. Thesis, Delft University of Technology, The Netherlands, 1991.17 Breugel K V. Cement and Concrete Research, 1992, 25(2), 319.18 Navi P, Pignat C. Advanced Cement Based Materials, 1996, 4(2), 58.19 Bentz D P. Journal of the American Ceramic Society, 1997, 80(1), 3.20 Maekawa K, Ishida T, Kishi T. Journal of Advanced Concrete Technology, 2003, 1(2), 91.21 Bishnoi S, Scrivener K L. Cement and Concrete Research, 2009, 39(4), 266.22 Bullard J W. Modelling and Simulation in Materials Science and Engineering, 2007, 15(7), 711.23 Bullard J W, Lotllenbach B, Stutzman P E, et al. Journal of Materials Research, 2011, 26(4), 609.24 Feng P, Garboczi E J, Miao C, et a1. Construction and Building Mate-rials, 2015, 96, 39l.25 Yan P Y, Zheng F. Journal of the Chinese Ceramic Society, 2006, 34(5), 555(in Chinese).阎培渝, 郑峰. 硅酸盐学报, 2006, 34(5), 555.26 Jin X Y, Wang Y W, Jin N G, et al. Journal of Building Materials, 2014, 17(5), 862(in Chinese).金贤玉, 王宇纬, 金南国, 等. 建筑材料学报, 2014, 17(5), 862.27 Wu D J, She W, Miu C W, et al. Journal of Building Materials, 2018(in Chinese).吴大江, 佘伟, 缪昌文, 等. 建筑材料学报, 2018.28 Wu D L, Wang P M. Materials Review, 2007, 21(4), 100(in Chinese).吴丹琳, 王培铭. 材料导报, 2007, 21(4), 100.29 Breugel K V. Cement and Concrete Research, 1995, 25(3), 522.30 Ye G. Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials. Ph.D. Thesis, Delft University of Technology, The Netherlands, 2003.31 Wang X Y, Lee H S. Construction & Building Materials, 2012, 28(1), 12.32 Taylor H F W. Advances in Cement Research, 1989, 2(6), 76.33 Nguyen V T. Rice husk ash as a mineral admixture for ultra-high-perfor-mance concrete. Ph.D. Thesis, Delft University of Technology, The Netherlands, 2011.34 Gao P. Simulation of hydration and microstructure development of blended cements. Ph.D. Thesis, Delft University of Technology, The Netherlands, 2018.35 Zhang M Z, Ye G, Breugel K V. Materiales de Construccion, 2010, 60(300), 19.36 Bentz D P. A three-dimensional cement hydration and microstructure program. I. hydration rate, heat of hydration, and chemical shrinkage. Building and Fire Research Laboratory, National Institute of Technology, USA, 1995.37 Wang P M, Zhao P Q, Liu X P, et al. Journal of Building Materials, 2015, 18(4),695(in Chinese).王培铭, 赵丕琪, 刘贤萍, 等. 建筑材料学报, 2015, 18(4), 695.38 Wang X Y, Cho H K, Lee H S. Composites Part B: Engineering, 2011, 42(1), 29.39 Wang C, Yang C H, Qian J S, et al. Journal of the Chinese Ceramic Society, 2012, 40(7), 1050(in Chinese).王冲, 杨长辉, 钱觉时, 等. 硅酸盐学报, 2012, 40(7), 1050.
[1] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[2] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[3] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[4] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[5] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[6] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[7] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[8] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[9] 黄守刚, 陈进杰, 王建西, 孙国文. 多孔玄武岩骨料轨枕用混凝土的制备及其硬化后的微结构[J]. 材料导报, 2020, 34(24): 24045-24054.
[10] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[11] 王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
[12] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[13] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[14] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[15] 余鑫, 于诚, 姜骞, 冉千平, 刘加平, 杨斌. 采用原位XRD研究早强剂对水泥早期水化的影响[J]. 材料导报, 2020, 34(2): 2058-2062.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed