Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22070-22077    https://doi.org/10.11896/cldb.19080090
  无机非金属及其复合材料 |
碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制
宋维龙1, 朱志铎1, 浦少云1, 宋世攻2, 彭宇一3, 顾晓彬4, 魏永强5
1 东南大学交通学院,岩土工程研究所,南京 211189
2 中铁十九局集团轨道交通工程有限公司,北京 101300
3 无锡地铁集团有限公司建设分公司,无锡 214000
4 中交三航局第三工程有限公司,南京 210011
5 山东汉诺宝嘉节能科技股份有限公司,济南 250101
Mechanical Performance and Micro-mechanism of Alkali-activated Binary/Ternary Composite Industrial Waste Residues Cementitious Materials
SONG Weilong1, ZHU Zhiduo1, PU Shaoyun1, SONG Shigong2, PENG Yuyi3, GU Xiaobin4, WEI Yongqiang5
1 Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing 211189, China
2 Rail Transportation Engineering Co., Ltd., China Railway 19th Bureau Group Co., Ltd., Beijing 101300, China
3 Wuxi Metro Group Co., Ltd., Wuxi 214000, China
4 No. 3 Engineering Co., Ltd. of CCCC Third Harbor Engineering Co., Ltd., Nanjing 210011, China
5 Shandong Hanobocar Energy Saving Technology Co., Ltd., Jinan 250101, China
下载:  全 文 ( PDF ) ( 9071KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究多元工业废渣在碱激发材料力学性能方面产生的协同效应,以水玻璃和氢氧化钠作为激发剂,以粉煤灰(FA)作为基础粉料,粒化高炉矿渣微粉(GGBS)和钢渣微粉(SS)作为外掺复合粉料制备胶凝材料。通过室内试验研究了GGBS、SS和GGBS+SS分别与FA复合及其掺量对标准养护净浆试样抗压强度、抗折强度和弹性模量的影响,并利用扫描电镜(SEM)和压汞(MIP)试验分析了硬化浆体微观形貌和孔隙分布特征的内在机制。结果表明,SS单独掺入会延缓FA基碱激发材料早期(3 d)抗压强度的发展,但与GGBS复合掺入则可弥补其自身不足,从而增强材料抗压强度;单掺40% GGBS时,试样3 d和28 d抗压强度分别增长了152.5%和81.9%,复掺40%(GGBS+SS)时,试样3 d和28 d抗压强度分别增长了89.2%和72.0%;复掺GGBS+SS对早期(3 d)抗压强度的提升效果虽弱于单掺GGBS的情况,但对后期(28 d)抗压强度的促进作用与单掺GGBS基本相当;此外,GGBS单独掺入会造成试样压折比增大,材料脆性增强,而与SS复合掺入则可改善材料的脆性;相同强度条件下,复掺GGBS+SS试样的弹性模量大于单掺GGBS试样,具有更好的抵抗变形的能力;SS单独掺入会降低基体内胶凝产物的生成数量,但与GGBS复合掺入可使试样达到与单掺GGBS试样同等致密水平的微观结构;SS单独掺入会造成基体内部毛细孔增多,孔隙体积增大,与GGBS复合掺入则可使得毛细孔转化为体积更小的凝胶孔,从而促进材料宏观力学强度的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋维龙
朱志铎
浦少云
宋世攻
彭宇一
顾晓彬
魏永强
关键词:  碱激发材料  粉煤灰  矿渣  钢渣  抗压强度  抗折强度  弹性模量  微观结构    
Abstract: To investigate the synergistic effect of multiple industrial waste residues on the mechanical properties of alkali-activated cementitious materials, this paper took water glass and sodium hydroxide as activators, fly ash (FA) as basic powder, ground granulated blast-furnace slag (GGBS) and steel slag (SS) as additive composite powders to produce cementitious materials. The effects of GGBS, SS and GGBS+SS compounded with FA and their contents on the mechanical properties of standard cured paste samples were studied through laboratory tests, and the internal mechanism of microstructure and pore distribution characteristic of hardened paste was analyzed by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests. The results show that although the single addition of SS delayed the development of early compressive strength, the composite addition of GGBS and SS could make up for the deficiency of SS, so as to enhance the compressive strength of the material. With 40% GGBS, the 3 d and 28 d compressive strengths of the sample were increased by 152.5% and 81.9%, respectively, and with 40% (GGBS+SS), the 3 d and 28 d compressive strengths of the sample were increased by 89.2% and 72.0%, respectively. The promotion effect of composite addition of GGBS+SS on the early (3 d) compressive strength was weaker than that of the single addition of GGBS, but the effect of composite addition of GGBS+SS on the later (28 d) compressive strength could reach the same level as that of the single addition of GGBS. In addition, the single addition of GGBS increased the ratio of compressive strength to flexural strength and worsened the brittleness of the material, while composite addition of GGBS and SS could weaken the brittleness of the material. Under the same strength, the elastic modulus of the sample of composite addition of GGBS+SS is greater than that of the sample of single addition of GGBS, which has better resistance to deformation. The single addition of SS would reduce the amount of gelling products in the matrix, while the composite addition of GGBS and SS could make the sample obtain a microstructure at the same level of compactness as the sample with single addition of GGBS. The single addition of SS would increase the amount of capillary pores and the pore volume of the matrix, while the composite addition of GGBS and SS could make the capillary pores transform into gel pores with smaller volume, thus improving the mechanical strength of materials at the macro level.
Key words:  alkali-activated materials    fly ash    ground granulated blast-furnace slag    steel slag    compressive strength    flexural strength    elastic modulus    microstructure
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TU525  
基金资助: 国家自然科学基金项目(42072297);南京市交通科技项目(2019)
通讯作者:  zhuzhiduo@seu.edu.cn   
作者简介:  宋维龙,东南大学岩土工程专业博士研究生。本科毕业于长安大学道路桥梁与渡河工程专业。主要从事工业固体废弃物利用及地下工程方面的研究。朱志铎,东南大学岩土工程系教授。本科毕业于南京大学,并在东南大学获得硕士和博士学位。主要从事地基处理、地下工程与环境岩土工程的研究。
引用本文:    
宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
SONG Weilong, ZHU Zhiduo, PU Shaoyun, SONG Shigong, PENG Yuyi, GU Xiaobin, WEI Yongqiang. Mechanical Performance and Micro-mechanism of Alkali-activated Binary/Ternary Composite Industrial Waste Residues Cementitious Materials. Materials Reports, 2020, 34(22): 22070-22077.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080090  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22070
1 Al-Majidi M H, Lampropoulos A, Cundy A, et al. Construction and Building Materials, 2016, 120, 198.2 Shi C J. Journal of Materials in Civil Engineering, 2004, 16(3), 230.3 Guan Shaobo. Research on active & cementitious capacity of steel-making slag and its concrete properties. Ph.D. Thesis, Wuhan University of Technology, China, 2008 (in Chinese).关少波. 钢渣粉活性与胶凝性及其混凝土性能的研究. 博士学位论文, 武汉理工大学, 2008.4 Liu Zhiwei. Fundamental study on iron recovering from EAF slag and preparing cementitious material from residual mud. Ph. D. Thesis, University of Science and Technology Beijing, China, 2015 (in Chinese).刘智伟. 电炉钢渣铁组分回收及尾泥制备水泥材料的技术基础研究. 博士学位论文, 北京科技大学, 2015.5 Van Deventer J S J, Provis J L, Duxson P. Minerals Engineering, 2012, 29, 89.6 Reddy M S, Dinakar P, Rao B H. Microporous and Mesoporous Mate-rials, 2016, 234, 12.7 Jang J G, Lee H K. Construction and Building Materials, 2016, 102, 260.8 Topark-Ngarm P, Chindaprasirt P, Sata V. Journal of Materials in Civil Engineering, 2015, 27(7), 04014198.9 Sindhunata, Van Deventer J S J, Lukey G C, et al. Industrial & Engineering Chemistry Research, 2006, 45, 3559.10 Gorhan G, Kurklu G. Composites: Part B, 2014, 58, 371.11 Xie Ziling, Li Xian. Concrete, 2014(6), 55 (in Chinese).谢子令,李显. 混凝土, 2014(6), 55.12 Kurklu G. Composites: Part B, 2016, 92, 9.13 Puligilla S, Mondal P. Cement and Concrete Research, 2013, 43(1), 70.14 Zhang Z H, Li L F, Ma X, et al. Construction and Building Materials, 2016, 113, 237.15 Cartwright C, Rajabipour F, Radlinska A. Journal of Materials in Civil Engineering, 2015, 27(7), B4014007.16 Gao Y, Xu J Y, Luo X, et al. Ceramics International, 2016, 42, 11666.17 Yu Qijun, Zhao Sanyin, Huang Jiaqi, et al. Journal of the Chinese Ceramic Society, 2005, 33(7), 871 (in Chinese).余其俊, 赵三银, 黄家琪, 等. 硅酸盐学报, 2005, 33(7), 871.18 Hojati M, Radlinska A. Construction and Building Materials, 2017, 150, 808.19 Lee N K, Kim E M, Lee H K. Construction and Building Materials, 2016, 113, 264.20 Nedeljkovi M, Mladena L, Van Breugel K. Journal of Cleaner Production, 2018, 80, 524.21 Wang Q, Yan P Y, Mi G D. Construction and Building Materials, 2012, 35, 8.22 Yan Handong. Contribution and mechanisms of waste slags characteristics and their multiple combination on high performance of cement based materials. Ph.D. Thesis, Southeast University, China, 2001(in Chinese).严捍东. 废渣特性及其多元复合对水泥基材料高性能的贡献与机理. 博士学位论文, 东南大学, 2001.23 Peng Hui, Cui Chao, Cai Chunsheng, et al. Acta Materiae Compositae Sinica, 2016, 32(12), 2952(in Chinese).彭晖, 崔潮, 蔡春声, 等. 复合材料学报, 2016, 32(12), 2952.24 Ye Jiayuan, Zhang Wensheng, Shi Di. Journal of the Chinese Ceramic Society, 2017, 45(8), 1101(in Chinese).叶家元, 张文生, 史迪. 硅酸盐学报, 2017, 45(8), 1101.25 Li Y P, Shen L, Mirmoghtadaei R, et al. Advances in Civil Engineering Materials, 2017, 6(1), 526.26 Jiang Y, Ling T C, Shi C J, et al. Resources, Conservation & Recycling, 2018, 136, 187.27 Wang Haifeng, Liu Jie, Que Yongsheng, et al. Journal of Materials Science & Engineering, 2016, 34(6), 895(in Chinese).汪海风, 刘杰, 阙永生, 等. 材料科学与工程学报, 2016, 34(6), 895.28 Kumar M L, Revathi V. Construction and Building Materials, 2016, 114, 1.29 Wongpa J, Kiattikomol K., Jaturapitakkul C, et al. Materials and Design, 2010, 31, 4748.30 Lizcano M, Kim H S, Basu S, et al. Journal of Materials Science, 2012, 47(6), 2607.31 El Idrissi A C, Paris M, Roziere E, et al. Materials Today Communications, 2018, 14, 225.32 Gao K, Lin K L, Wang D Y, et al. Construction and Building Materials, 2014, 53, 503.33 Khater H M, El Gawaad H A A. Construction and Building Materials, 2016, 102, 329.34 Ma Y, Hua J, Ye G. Fuel, 2013, 104, 771.35 Chotetanorm C, Chindaprasirt P, Sats V, et al. Journal of Materials in Civil Engineering, 2013, 25(1), 105.
[1] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[2] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[3] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[4] 周文娟, 侯云芬, 郑东昊. 玻璃纤维对再生骨料板力学性能的影响[J]. 材料导报, 2020, 34(Z1): 216-219.
[5] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[6] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[7] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[8] 贾敏, 杨磊. 粉煤灰盐酸法提铝后残渣的综合利用研究[J]. 材料导报, 2020, 34(Z1): 277-279.
[9] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[10] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[11] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[12] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[13] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[14] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[15] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed