Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6075-6080    https://doi.org/10.11896/cldb.19030102
  无机非金属及其复合材料 |
热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究
袁小亚1, 彭一豪1, 孙立涛1, 郑旭煦1, 秦泽海2
1 重庆交通大学材料科学与工程学院,重庆 400074;
2 重庆永固新型建材有限公司,重庆 400000
Dispersion of Thermally Reduced Graphene Oxide in Simulated Hydrated Cement Environment and Study on Performance and Mechanism of Graphene Reinforced Mortar
YUAN Xiaoya1, PENG Yihao1, SUN Litao1, ZHENG Xuxu1, QIN Zehai2
1 School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2 Chongqing Yonggu New Building Material, Chongqing 400000, China
下载:  全 文 ( PDF ) ( 8477KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 掺配纳米石墨烯能大幅度提升水泥基材料的各项性能,但如何改善石墨烯纳米片层在水泥水化的高钙高碱性环境中的稳定分散是一个难点。本工作以一种聚多芳香环类减水剂(JS)作为分散剂,通过测定吸光度研究了高温热还原法制备的还原型氧化石墨烯(rGO)在用于模拟水泥水化高钙高碱性环境的饱和氢氧化钙(CH)溶液中的稳定分散性。研究表明,当JS分散剂与胶凝材料质量比为1.5%时,rGO在CH溶液中有相当好的分散效果。石墨烯掺配水泥砂浆的力学性能测试表明,当rGO掺量为0.05%时,3d抗折、抗压强度分别提高了9.5%、11.1%,28d抗折、抗压强度分别提高了6.74%、26.5%。化学结合水试验及微观测试表明,JS分散剂能使rGO有效均匀地分布在水泥石中,加速水泥水化进程,进而调控水化产物晶体生长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁小亚
彭一豪
孙立涛
郑旭煦
秦泽海
关键词:  水泥水化  分散剂  石墨烯  水泥胶砂  力学性能  微观结构    
Abstract: Graphene nanosheets can greatly improve the properties of cement-based materials, but how to improve the dispersion of graphene nano-sheets in calcium and alkaline-abundant cement hydration environment is a key problem. In this study, a polyaromatic water reducer (JS) was used as a dispersant to study the dispersion of reduced graphene oxide (rGO) prepared by high temperature thermal reduction in saturated calcium hydroxide (CH) solution used to simulate hydrated cement system rich in calcium and alkaline environment. The study showed that when the mass ratio of JS to cement was 1.5%, rGO could be well-dispersed in CH solution. The mechanical test of graphene-mixed cement mortar showed that when the mass content of rGO to cement was 0.05%, the 3 d flexural and compressive strength were increased by 9.5% and 11.1%, respectively and the 28 d flexural and compressive strength were increased by 6.74% and 26.5% respectively. The chemical bonded water and microscopic tests showed that JS could effectively disperse rGO in hardened cement motar, accelerate the hydration process of cement paste and regulate the crystal growth of hydrated products.
Key words:  cement hydration    dispersant    graphene    cement mortar    mechanical performance    microstructure
                    发布日期:  2020-03-12
ZTFLH:  O319.56  
基金资助: 国家自然科学基金(51402030);重庆市科委科技项目基金(cstc2017jcyjBX0028);重庆市教育会科学技术研究项目(KJZD-K201800703)
作者简介:  袁小亚,博士,教授,重庆市高校中青年骨干教师、重庆交通大学优秀青年拔尖人才。2006年毕业于南开大学,获高分子化学与物理专业博士学位。同年7月进入重庆交通大学工作至今。主要从事纳米复合材料、建筑功能材料、高性能水泥混凝土等领域的基础与应用基础研究。近五年主持主研国家级、省部级等各类项目10余项;在国内外高水平杂志发表学术论文50多篇,其中SCI/EI检索收录30多篇。拥有国家发明专利6项、实用新型专利1项。曾获省部级奖励2项;彭一豪,重庆交通大学材料学院在读硕士,师承袁小亚教授,从事纳米石墨烯水泥基复合材料研究。
引用本文:    
袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
YUAN Xiaoya, PENG Yihao, SUN Litao, ZHENG Xuxu, QIN Zehai. Dispersion of Thermally Reduced Graphene Oxide in Simulated Hydrated Cement Environment and Study on Performance and Mechanism of Graphene Reinforced Mortar. Materials Reports, 2020, 34(6): 6075-6080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030102  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6075
1 Jiang R S. Aqueous dispersion of graphene and its mechanical properties of cement-based composite. Master's Thesis, Dalian University of Technology, China, 2017 (in Chinese).
姜瑞双. 石墨烯水性分散及水泥基复合材料力学性能. 硕士学位论文, 大连理工大学, 2017.
2 Lv S H, Ma Y J, Qiu C C, et al. Concrete, 2013 (8), 51 (in Chinese).
吕生华, 马宇娟, 邱超超, 等.混凝土, 2013 (8), 51.
3 Wang Q, Li S Y, Wang J, et al. Journal of the Chinese Ceramic Society, 2018, 46 (2), 163 (in Chinese).
王琴, 李时雨, 王健, 等.硅酸盐学报, 2018, 46 (2), 163.
4 Wang B M, Jiang R S, Zhao R Y. Concrete, 2016 (12), 68 (in Chinese).
王宝民, 姜瑞双, 赵汝英.混凝土, 2016 (12), 68.
5 Lotya M, King P J, Khan U, et al. ACS Nano, 2010, 4 (6), 3155.
6 Khan U, O'Neill A, Lotya M, et al. Small, 2010, 6 (7), 864.
7 Wei W, Lv W, Yang Q H, et al. New Carbon Materials, 2011, 26 (1), 36 (in Chinese).
魏伟, 吕伟, 杨全红. 新型炭材料, 2011, 26 (1), 36.
8 Wang J. Study of the effect of graphene oxide on cement performance and its mechanism. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2017 (in Chinese).
王健. 氧化石墨烯对水泥的性能影响及作用机理研究. 硕士学位论文, 北京建筑大学,2017.
9 Chen W Q. Analysis of graphene band gap modulation and Raman spectroscopy. Master's Thesis, Xi'an University of Technology, China, 2018 (in Chinese).
陈文强. 基于石墨烯带隙调控及拉曼光谱的分析研究. 硕士学位论文, 西安理工大学, 2018.
10 Mokhtar, Abo-El-Enein, Hassaan, et al. Construction and Building Materials, 2017, 138 (complete),333.
11 Jing G J. Research on preparation and mechanism of graphene modified cement. Master's Thesis,University of Jinan, China, 2017 (in chinese).
景国建. 石墨烯改性水泥材料的制备及其机理研究. 硕士学位论文, 济南大学, 2017.
12 Yuan X Y, Zeng J J, Niu J W, et al. Journal of Functional Material, 2018,49 (10), 10184 (in Chinese).
袁小亚, 曾俊杰, 牛佳伟, 等.功能材料, 2018, 49 (10), 10184.
13 Zhao H L, Cai W H, Wang L, et al.Journal of Yanshan University, 2018, 42 (5), 377 (in chinese).
赵洪力, 蔡文豪, 王丽, 等.燕山大学学报, 2018, 42 (5), 377.
14 Yin L. Study on salt corrosion resistance performance of cement mortar with thermal reduced graphene. Master's Thesis, Chongqing Jiaotong University, China, 2017 (in Chinese).
殷璐. 热还原石墨烯改性水泥砂浆抗盐腐蚀性能研究. 硕士学位论文, 重庆交通大学, 2017.
[1] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[2] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[3] 童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
[4] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[5] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[6] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[7] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[8] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[9] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[10] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[11] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[12] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[13] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[14] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[15] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed