Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5048-5060    https://doi.org/10.11896/cldb.19010011
  无机非金属及复合材料 |
石墨烯薄膜的制备方法及应用研究进展
何延如1,2, 田小让1,2, 赵冠超1,2, 代玲玲1,2, 聂革1,2, 刘敏胜1,2
1 新奥科技发展有限公司,廊坊 065001;
2 煤基低碳能源国家重点实验室,廊坊 065001
Research Progress in Preparation and Application of Graphene Films
HE Yanru1,2, TIAN Xiaorang1,2, ZHAO Guanchao1,2, DAI Lingling1,2, NIE Ge1,2, LIU Minsheng1,2
1 ENN Science and Technology Development Co.,Ltd.,Langfang 065001, China;
2 State Key Laboratory of Coal-based Low-carbon Energy, Langfang 065001, China
下载:  全 文 ( PDF ) ( 8101KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 完美石墨烯由于具有高导电性、高透光性、高柔韧性、高阻隔性、高机械强度、高化学稳定性、超薄等特性,被誉为21世纪最具颠覆性的“新材料之王”,引起全球各界的关注,并预期在电子领域、光子领域、能源领域、环保领域、生物医疗健康等领域具有广阔的发展前景。目前,欧洲、美国、日本等众多国家,都把石墨烯列为本世纪最重要的新材料进行研究和开发,并已在新能源、电子等方面取得重要进展和初步应用效果。我国也明确把石墨烯作为国家重要战略材料列入国家“十三五”规划。
  石墨烯分为石墨烯粉体(还原氧化石墨烯)和石墨烯薄膜两大类。目前研究较多的是石墨烯粉体,且其制备和应用方面都有了系统的研究,并取得了一定成果。对于石墨烯薄膜,研究较多的是其制备技术,虽然对石墨烯薄膜在各个领域的应用均进行了初步研究,验证了它应用于其中的可行性,并预期其在部分应用领域具有显著优势,但多数处于研究初期,还面临众多技术挑战。因为目前制备的石墨烯薄膜性能和理论性能有较大差距,所以需要研究者们一方面改进制备技术,提升石墨烯薄膜性能;另一方面结合石墨烯特性选择拥有显著优势的应用领域进行深入研究,设计能够体现石墨烯薄膜性能优势的产品器件,这样才能真正打开石墨烯薄膜的应用市场。
  本文首先介绍了化学气相沉积法制备石墨烯薄膜的研究现状及发展趋势。目前,石墨烯薄膜晶畴尺寸多为微米级到毫米级,少数研究机构所制的石墨烯薄膜晶畴可达到厘米级;石墨烯薄膜迁移率一般可达到10 000~30 000 cm2/(V·s),方阻小于150 Ω/□,透光率达到97.7%。石墨烯薄膜发展趋势是开发可控、快速制备大面积、大晶畴、高质量原位沉积石墨烯薄膜的技术和找到可体现石墨烯薄膜优异性能的应用场景。其次在欧盟“石墨烯旗舰计划”科技路线图的框架下,根据石墨烯薄膜的诸多预期特性,结合技术先进性、未来市场规模、可行性、开发周期等方面,选定16项主要应用方向作为重点关注方向,并将其归为七大类应用:透明导电层、分离隔离膜、场效应晶体管(沟道层)、光电探测器(有源区)、导热材料、集流体涂层、催化剂载体。本文重点系统地分析了石墨烯薄膜在上述应用中预期带来的优势、现状和面临的问题,为石墨烯薄膜材料的发展提供研究基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何延如
田小让
赵冠超
代玲玲
聂革
刘敏胜
关键词:  石墨烯薄膜  化学气相沉积(CVD)  透明导电层  场效应晶体管  分离隔离膜    
Abstract: Graphene, with its high conductivity, high transparency, high flexibility, high barrier, high mechanical strength, high chemical stability and ultra-thin properties, is regarded as the most subversive material—“king of new materials” in the 21st century and has attracted worldwide attention. It is expected to be widely used in many fields, like electronics, photons, energy, environmental protection, bio-medical health, etc. At present, many countries, like Europe, the United States and Japan, have made graphene on their lists as the most important new material to be studied and developed in this century. And important progress and preliminary application have been made in new energy, electronics and other aspects. China has also explicitly enlisted graphene as an essential strategic material in the national “13th Five-Year plan”.
  Graphene is divided into two categories: graphene powder (reduced graphene oxide) and graphene film. Currently, graphene powder is the main research object. The preparation and application of graphene powder have been systematically studied, and some achievements have been achieved. But for graphene films, many studies are done on preparation technologies. As for its application, although preliminary application researches have been carried out in various fields, which verify the feasibility of applying graphene films and meet the expectation of creating significant advantages in its partial application, most of them are in the preliminary stage and face with lots of technical challenges. That is related to the fact that there is a huge gap between the practical performance and the theoretical performance of the graphene films. So, preparation technologies should be improved to optimize the performance of graphene films, on the other hand, considering the characteristics of graphene, the application of graphene films with apparent merits should be chosen for further studies and the design of products made from graphene films so as to open the application market of graphene films indeed.
  Firstly, the research status and trend of development of graphene films prepared by chemical vapor deposition is introduced in this thesis: the grain domain size of graphene films is mainly in micron— millimeter scale, even some research institutes in centimeter level; and mobility of graphene films reaches 10 000—30 000 cm2/(V·s); the square resistance of graphene films is <150 Ω/□, and the transmittance of graphene films is 97.7%. The trend of development is to develop technologies so as to controllably and rapidly produce in situ deposition graphene films in large area, large grain domain size and high quality and to find application scenarios where the excellent properties of graphene films are reflected. Secondly, under the framework of the European Union's “Graphene Flagship Program” technology roadmap, according to several characteristics of graphene films and considering technological advancement, future market scale, feasibility and development cycle,sixteen main application directions are selected as the focus. And they are classified into seven categories: transparent conductive layers, separation and isolation membranes, field effect transistors (channel layer), photodetectors (active region), thermal conductive materials, current collector coatings, catalyst carriers. The advantages, current situation and problems caused by the application of graphene films in these fields are mainly introduced to provide the basis research for the development of grapheme films.
Key words:  graphene films    chemical vapor deposition(CVD)    transparent conductive layer    field effect transistor    separation and isolation membrane
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TB321  
  TB34  
通讯作者:  heyanru1984@126.com   
作者简介:  何延如,2010年毕业于河北工业大学,获得材料物理与化学专业硕士学位。现任职于新奥科技发展有限公司。目前主要研究领域为新能源技术和新能源材料。发表学术论文3篇,授权专利16项,其中发明专利12项。
引用本文:    
何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
HE Yanru, TIAN Xiaorang, ZHAO Guanchao, DAI Lingling, NIE Ge, LIU Minsheng. Research Progress in Preparation and Application of Graphene Films. Materials Reports, 2020, 34(5): 5048-5060.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010011  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5048
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5296), 666.
2 Nair R R, Blake P, Grigorenko A N, et al. Science, 2008, 320(5881), 1308.
3 Bolotin K I, Sikes K J, Jiang Z, et al. Solid State Communications, 2008, 146(9-10), 351.
4 Lee C, Wei X, Kysar J W, et al. Science, 2008, 321(5887), 385.
5 Balandin A A, Ghosh S, Bao W Z, et al. Superior Thermal Conductivity of Single-Layer Graphene Nano Letters, 2008, 8(3), 902.
6 Stoller M D, Park S, Zhu Y W, et al. Nano Letters, 2008, 8(10), 3498.
7 Wang H, Wang G Z, Bao P F, et al. Journal of the American Chemical Society, 2012, 134, 3627.
8 Li X S, Magnuson C W, Venugopal A, et al. Journal of the American Chemical Society, 2011, 133(9), 2816.
9 Mohsin A, Liu L, Liu P Z, et al. Acs Nano, 2013, 7(10), 8924.
10 Wu T R, Ding G Q, Shen H L, et al. Advanced Functional Materials, 2013, 23(2), 198.
11 Gao L B, Ren W C, Xu H L, et al. Nature Communications, 2012, 3(2), 699.
12 Wang C C, Chen W, Han C, et al. Scientific Reports,2014, 4, 4537.
13 Chen S S, Ji H X, Chou H, et al. Advanced Materials, 2013, 25(14), 2062.
14 Xu J B, Hu J X, Li Q, et al. Small, 2017, 13(27), 1.
15 Yan Z, Lin J, Peng Z W, et al. ACS Nano, 2012, 6(10), 9110.
16 Lin L, Sun L Z, Zhang J C, et al. Advanced Materials, 2016, 28 (23), 4671.
17 Zhou H L, Yu W J, Liu L X, et al. Nature Communications, 2013, 4(2096), 1.
18 Sun L Z, Lin L, Zhang J C, et al. Nano Research, 2017, 10(2), 355.
19 Hao Y F, Bharathi M S, Wang L, et al. Science, 2013, 342(6159), 720.
20 Wu T R, Zhang X F, Yuan Q H, et al. Nature Materials, 2016, 15, 43.
21 Vlassiouk I V, Stehle Y, Pudasaini P R, et al. Nature Materials, 2018, 17, 318.
22 Xu X Z, Zhang Z H, Dong J C, et al. Science Bulletin, 2017, 62(15), 1074.
23 Chen M G, Haddon R C, Yan R X, et al. Materials Horizons, 2017, 4, 1054.
24 Yang X W, Peng H L, Xie Q, et al. Journal of Electroanalytical Chemistry, 2013, 688, 243.
25 Gorantla S, Bachmatiuk A, Hwang J, et al. Nanoscale, 2014, 6(2), 889.
26 Zak A, Andersson M A, Bauer M, et al. Nano Letters, 2014, 14(10), 5834.
27 Levendorf M P, Ruiz-Vargas C S, Garg S, et al. Nano Letters, 2009, 9(12), 4479.
28 Novoselov K S, Fal′ko V I, Colombo L, et al. Nature, 2012, 490, 192.
29 Ferrari A C, Bonaccorso F, Falko V, et al. Nanoscale, 2015, 7(11), 4598.
30 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology, 2010, 5, 574.
31 Han T H, Lee Y, Choi M R, et al. Nature Photonics, 2012, 6(2),105.
32 Ahn J H, Hong B H. Nature Nanotechnology, 2014, 9, 737.
33 Xu Y H, Liu J Q. Small, 2016, 12(11), 1400.
34 Gao S, Wu X Y, Ma H B, et al. ACS Applied Materials & Interfaces, 2017, 9(22), 18410.
35 Emre O P, Osman Balcl, Coskun Kocabas. Scientific Reports, 2014, 4, 6484.
36 Liu P B, Yang J, Wei D P, et al. Functional Materials, 2017, 48(1), 01019.
37 Chandrashekar B N, Deng B, Smitha A S, et al. Advanced Materials, 2015, 27, 5210.
38 Ko Y H, Nagaraju G, Lee S H, et al. ACS Applied Materials & Interfaces, 2014, 6 (9), 6631.
39 Lin L, Hu Y F, Xu C, et al. Nano Energy, 2013, 2(1), 75.
40 Choi D, Choi M Y, Shin H J, et al. Journal of Physical Chemistry C, 2010, 114(2), 1379.
41 Zhong J Z, Zhu H L, Zhong Q Z, et al. ACS Nano, 2015, 9(7), 7399.
42 Kim S, Gupta M K, Lee K Y, et al. Advanced Materials, 2014, 26(23), 3918.
43 Chen H, Xu Y, Bai L, et al. Advanced Materials Technologies, 2017, 2, 1700044.
44 Lozada-Hidalgo M, Zhang S, Hu S, et al. Nature Communications, 2017, 8, 15215.
45 Hu S, Lozada-Hidalgo M, Wang F C, et al. Nature, 2014, 516(7530), 227.
46 Lozada-Hidalgo M, Hu S, Marshall O, et al. Science, 2016, 351(6268), 68.
47 Holmes S M, Balakrishnan P, Kalangi V S, et al. Advanced Energy Materials, 2016, 5(7), 1601216.
48 Sun P Z, Wang K L, Zhu H W, et al. Advanced Materials, 2016, 28, 2287.
49 Surwade S P, Smirnov S N, Vlassiouk I V, et al. Nature Nanotechnology, 2015, 10 (5), 459.
50 Global Graphene Industry Research Report in 2017, China Innovation Alliance of the Graphene Industry. June 2017(in Chinese).
2017年全球石墨烯产业研究报告,中国石墨烯产业技术创新战略联盟. 2017年6月.
51 Aaron M G, Rodolfo C S, Hiroyuki M, et al. Nature Nanotechnology, 2017, 12 (11),1083.
52 Abraham J, Vasu K S, Williams C D, et al. Nature Nanotechnology, 2017, 12, 546.
53 O'Hern S C, Stewart C A, Boutilier M S, et al. ACS Nano, 2012, 6(11), 10130.
54 Koenig S P, Wang L, Pellegrino J, et al. Nature Nanotechnology, 2012, 7(11), 728.
55 Kidambi P R, Mariappan D D, Dee N T, et al. ACS Applied Materials & Interfaces, 2018, 10(12), 10369.
56 Wang C, Liu Y M. Semiconductor Technology, 2016, 41(8), 561(in Chinese).
王聪,刘玉荣.半导体技术, 2016, 41(8), 561.
57 Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. Science, 2010, 327(5966), 662.
58 Llinas J P, Fairbrother A, Barin G B, et al. Nature Communications, 2017, 8 (1), 633.
59 Lee S K, Jang H Y, Jang S, et al. Nano Letters, 2012, 12, 3472.
60 Liao L, Lin Y C, Bao M, et al. Nature, 2010, 467(7313), 305.
61 Yin W H, Han Q, Yang X H. Acta Physica Sinica, 2012, 61(24), 248502(in Chinese).
尹伟红,韩勤,杨晓红.物理学报, 2012, 61(24), 248502
62 Sun Z H, Chang H X. ACS Nano, 2014, 8(5), 4133.
63 Koppens F H L, Mueller T, Avouris P, et al. Nature Nanotechnology, 2014, 9(10), 780.
64 Levendorf M P, Ruiz-Vargas C S, Garg S, et al. Nano Letters, 2009, 9(12), 4479.
65 Zak A, Andersson M A, Bauer M, et al. Nano Letters, 2014, 14(10), 5834.
66 Mueller T, Xia F N, Avouris P. Nature Photonics, 2010, 4(5), 297.
67 Casalino1 M, Sassi U, Goykhman I, et al. ACS Nano, 2017, 11(11), 10955.
68 Wang W H, Yan Z Z, Zhang J F, et al. Optica, 2018, 5, 27.
69 Lee Y H, Lee J H. Applied Physics Letters, 2010, 96, 083101.
70 Gao Z L, Zhang Y, Fu Y F, et al. Carbon, 2013, 61, 342.
71 Zhong Y, Nika1 D L, Balandin A A. IET Circuits Devices & Systems, 2015, 9(1), 4.
72 Wang N, Samani M K, Li H, et al. Small, 2018, 14(29), 1801346.
73 Wang M Z, Tang M, Chen S L, et al. Advanced Materials, 2017, 29(47), 1703882.
74 Meng Q Q, Deng B, Zhang H M, et al. Energy Storage Materials, 2019, 16, 419.
75 Ling C Y, Wang J L. Acta Physico-Chimica Sinica, 2017, 33(5), 869(in Chinese).
凌崇益, 王金兰.物理化学学报, 2017, 33(5), 869.
76 Shi J P, Liu M X, Wen J X, et al. Advanced Materials, 2015, 27(44), 7086.
77 Shi J P, Zhou X B, Han G F, et al. Advanced Materials Interfaces, 2016, 17(3), 1600332.
[1] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[2] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[3] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[4] 张自元, 门传玲, 曹军, 李振鹏, 赵明杰. 借助聚合物实现石墨烯转移的技术进展*[J]. 《材料导报》期刊社, 2017, 31(3): 130-135.
[5] 张栋, 肖淼, 马迅, 程国胜, 张兆春. 一种在硅材料表面组装金纳米颗粒的新方法*[J]. 《材料导报》期刊社, 2017, 31(2): 25-28.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed