Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1975-1982    https://doi.org/10.11896/cldb.18040132
  无机非金属及其复合材料 |
SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应
孙钰琨1, 白波1,2, 马美玲1, 王洪伦2, 索有瑞2, 谢黎明3, 柴禛1
1 长安大学旱区地下水文与生态效应教育部重点实验室,西安 710054
2 中科院西北高原生物研究所,西宁 810001
3 国家纳米科学中心,中国科学院纳米标准与检测重点实验室,北京 100190
Preparation and Field-effect Mobility of Nb Doped MoS2 Nano-filmson SiO2 Substrate
SUN Yukun1, BAI Bo1,2, MA Meiling1, WANG Honglun2, SUO Yourui2, XIE Liming3, CHAI Zhen1
1 Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang’an University, Xi’an 710054
2 Northwest Plateau Institutes of Biology, Chinese Academy of Sciences, Xining 810001
3 Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190
下载:  全 文 ( PDF ) ( 6075KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化钼(MoO3)、硫(S)和氯化铌(NbCl5)作为前驱体,利用一锅两步化学气相沉积法,在SiO2基底上大面积地生长连续性好、均匀负载的Nb-MoS2薄膜结构。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)表征可知薄层具有较好的连续性,同时使用拉曼光谱(Raman)、光致发光光谱(PL)和X射线光电子能谱(XPS)证实了掺杂后薄膜内部出现高达90 meV的蓝移现象。将薄膜制成场效应管(FET),并对其电学性能进行测试得出,场效应迁移率为1.22 cm2·V-1·s-1,电流开关比为105,并证实了当Nb掺杂入MoS2薄膜后使得薄膜整体阻抗大幅降低,整体阻抗降低到66.67 kΩ,比未掺杂Nb的MoS2薄膜降低了约40%。本工艺操作简单、成本低、重现率高,为制备高质量、大面积过渡金属掺杂的MoS2薄膜光电学器件提供了新的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙钰琨
白波
马美玲
王洪伦
索有瑞
谢黎明
柴禛
关键词:  二维薄膜材料  过渡金属硫化物  化学气相沉积法(CVD)  拉曼光谱  光致发光光谱  场效应晶体管    
Abstract: In this study, large-area growth of Nb-MoS2 layers on SiO2 substrates using one-pot chemical vapor deposition via two steps was successfully achieved. For the first time, a facile, cost-effective and mass-scalable direct synthesis approach was designed for doping Nb into MoS2 layers using MoO3, sulfur (S) and NbCl5 as precursors. The proposed process allowed retaining the uniformity of large area thin layers which are sui-table for device fabrication. The structural and optical properties of the resulting Nb-MoS2 layers were systematically investigated. Scanning electron microscope (SEM), atomic force microscope (AFM), Raman, photoluminescence (PL) spectra and X-ray photoelectron spectroscopy (XPS) analyses confirmed the formation of continuous and crystalline few-layers MoS2 and Nb-MoS2. An obvious blue-shift of up to 90 meV in photoluminescence peaks was observed for samples with different grain sizes. The electrical properties of the as-prepared materials were evaluated by bottom-gate FETs. A field-effect mobility of 1.22 cm2·V-1·s-1 and a current on/off ratio of 105 were obtained. In particular, Nb-MoS2 prepared by Nb doping greatly reduced the resistance of the film to 66.67 kΩ. These findings provide a novel route towards scaled-up synthesis of high-quality few-layered MoS2 by transition-metal doping in TMDCs which are suitable for electronic and optoelectronic devices.
Key words:  two-dimensional films    transition-metal dichalcogenides    chemical vapor deposition (CVD)    Raman spectroscopy    photoluminescence spectrum    field effect transistor
                    发布日期:  2019-05-31
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21176031);中央高校基本科研项目(591310829172201;310829172202; 310829175001;310829165027)
通讯作者:  baibochina@163.com   
作者简介:  孙钰琨,于2015年毕业于长安大学,获得本科学历。于2016年9月至2017年5月在中国科学院,国家纳米科学中心联合培养学习。目前在长安大学攻读博士学位,主要从事二维材料和光催化材料领域的研究。白波,于2003年毕业于西安交通大学,获得博士学位。2004年加入长安大学环境科学与工程学院任教。2009年至2011年,以访问学者的身份访学诺丁汉大学。并在长安大学获得了博士后学位。主要从事纳米复合材料的合成及其在污水中光催化降解污染物的研究。
引用本文:    
孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
SUN Yukun, BAI Bo, MA Meiling, WANG Honglun, SUO Yourui, XIE Liming, CHAI Zhen. Preparation and Field-effect Mobility of Nb Doped MoS2 Nano-filmson SiO2 Substrate. Materials Reports, 2019, 33(12): 1975-1982.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040132  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1975
1 Xu M, Liang T, Shi M, et al. Chemical Reviews, 2013, 113(5),3766.
2 Zhang K, Feng S, Wang J, et al. Nano Letters, 2015, 15(10),6586.
3 Gao J, Kim Y D, Liang L, et al. Advanced Materials, 2016, 28(44),9735.
4 Suh J, Park T E, Lin D Y, et al. Nano Letters, 2014, 14(12),6976.
5 Lin Y C, Dumcenco D O, Komsa H P, et al. Advanced Materials, 2014, 26(18),2857.
6 Zeng H, Dai J, Yao W, et al. Nature Nanotechnology, 2012, 7(8),490.
7 Dolui K, Rungger I, Das Pemmaraju C, et al. Physical Review B, 2013, 88(7),4192.
8 Naveh D, Ramasubramaniam A. Physical Review B, 2013, 87(19),2624.
9 Ivanovskaya V V, Zobelli A, Gloter A, et al. Physical Review B, 2008, 78(13), 134104.
10Suh J, Park T E, Lin D Y, et al. Nano Letters, 2014, 14(12),6976.
11Li H, Zhang G, Wang L. Journal of Physics D—Applied Physics, 2016, 49(9),095501.
12Shi Y, Huang J K, Jin L, et al. Scientific Reports, 2013, 3(5),1839.
13Sarkar D, Xie X, Kang J, et al. Nano Letters, 2015, 15(5),2852.
14Yang L, Majumdar K, Liu H, et al. Nano Letters, 2014, 14(11),6275.
15Lee Y H, Zhang X Q, Zhang W, et al. Advanced Materials, 2012, 24(17),2320.
16Park M, Park Y, Chen X, et al. Advance Materials, 2016, 28, 2556.
17Yu Y, Li C, Liu Y, et al. Scientific Reports, 2013, 3(5),1866.
18Lee C, Yan H, Brus L E, et al. ACS Nano, 2010, 4(5),2695.
19Hai L, Yin Z, He Q, et al. Small, 2012, 8(1),63.
20Zhang K, Feng S, Wang J, et al. Nano Letters, 2015, 15(10),6586.
21Biesinger M C, Payne B P, Grosvenor A P, et al. Applied Surface Science, 2011, 257(7),2717.
22Fujita T, Ito Y, Tan Y, et al. Nanoscale, 2014, 6(21),12458.
23Mcguire G E, Schweitzer G K, Carlson T A. Chemischer Informations-dienst, DOI:10.1002/chin.197348010.
24Zande A M V D, Huang P Y, Chenet D A, et al. Nature Materials, 2013, 12(6),554.
25Duan X, Wang C, Shaw J C, et al. Nature Nanotechnology, 2014, 9(12),1024.
26Ovchinnikov D, Allain A, Huang Y S, et al. ACS Nano, 2014, 8(8),8174.
27Georgiou T, Jalil R, Belle B D, et al. Nature Nanotechnology, 2013, 8(2),100.
28Huang P Y, Ruizvargas C S, Am V D Z, et al. Nature, 2011, 469(7330),389.
29Mak K F, He K, Lee C, et al. Nature Materials, 2013, 12(3),207.
30Gao J, Li L, Tan J, et al. Nano Letters, 2016, 16(6),3780.
31Lin T W, Su C Y, Zhang X Q, et al. Small, 2012, 8(9),1384.
32Kaasbjerg K, Thygesen K S, Jacobsen K W. Physical Review B, 2012, 85(11),115317.
33Baugher B W H, Churchill H O H, Yang Y, et al. Nano Letters, 2013, 13(9),4212.
34Hussain S, Shehzad M A, Vikraman D, et al. Nanoscale, 2016, 8(7),4340.
35Das S R, Kwon J, Prakash A, et al. Applied Physics Letters, 2015, 106(8),147.
36Yoon Y, Ganapathi K, Salahuddin S. Nano Letters, 2011, 11(9),3768.
37Pu J, Yomogida Y, Liu K K, et al. Nano Letters, 2012, 12(8),4013.
38Zhang J, Yu H, Chen W, et al. ACS Nano, 2014, 8(6),6024.
39Xie S, Xu M, Liang T, et al. Nanoscale, 2015, 8(1),219.
[1] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[2] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[3] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[4] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[5] 熊建功,张创伟,王 康,孔令仪,赵弋菲,陈 龙,李永涛. Sr、Co共掺多铁性材料BiFeO3的性能[J]. 《材料导报》期刊社, 2018, 32(10): 1582-1586.
[6] 张栋, 肖淼, 马迅, 程国胜, 张兆春. 一种在硅材料表面组装金纳米颗粒的新方法*[J]. 《材料导报》期刊社, 2017, 31(2): 25-28.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed