Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 426-432    https://doi.org/10.11896/cldb.201903008
  无机非金属及其复合材料 |
贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能
吴治涌1, 水世显1, 张显1, 杨鹏1,2,3, 万艳芬1,2,3
1 西安电子科技大学先进材料与纳米科技学院,西安 710071
2 云南大学材料科学与工程学院,昆明 650091
3 云南省微纳材料与技术重点实验室,昆明 650091
A Review on Noble Metal Nanoparticles-Two-dimensional Transition Metal Dichalcogenides Nano-hybrids: Preparation and Their Photoelectric Properties
WU Zhiyong1, SHUI Shixian1, ZHANG Xian1, YANG Peng1,2,3, WAN Yanfen1,2,3
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071
2 School of Materials Science and Engineering, Yunnan University, Kunming 650091
3 Yunnan Key Laboratory of Micro-Nano Materials and Technology, Kunming 650091
下载:  全 文 ( PDF ) ( 2322KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 过渡金属硫化物是由过渡金属元素和硫族元素构成,结构通式为MX2,其中M和X分别代表过渡金属和硫族元素。与石墨烯类似,过渡金属硫化物也是二维层状材料,层内由共价键键合形成六角网状结构,层间由范德华力相互作用堆积而成。然而,纯的石墨烯的零带隙限制了其在大多数电子和光电子上的应用。相反,已有研究表明,MoS2由块体材料厚度逐渐减小为单层材料时,其能带结构由间接带隙转变为直接带隙。同样,电子输运测试结果表明,二维过渡金属硫化物具有高的载流子迁移率、大的开关比等。但是二维过渡金属硫化物光吸收及光发射强度低,在很大程度上限制了该材料在光电领域的应用。为了突破二维过渡金属硫化物自身光吸收和光发射强度低的局限性,科研工作者将贵金属纳米颗粒独特的等离激元共振效应作为激发泵浦,增强二维过渡金属硫化物的光致发光效率,使贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构展现出独特的光学性能和电学性能,为其在光学、生物、存储、电学以及催化等领域的应用开辟了新的道路。
目前,对贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构的研究,主要集中在利用贵金属纳米球、纳米棒、纳米岛、纳米盘、纳米天线、纳米核壳等结构对光进行汇聚,激发贵金属纳米结构中的表面等离激元,再将能量转移给二维过渡金属硫化物,进而在其中产生高强度的光吸收和光发射,对其光学特性产生明显的调制作用,并研究该复合纳米结构的光致发光和光生电流的增强特性。前期报道中主要采用电子束刻蚀、旋涂、浸润等方法来构筑复合纳米结构,但以上方法构筑的复合纳米结构中贵金属纳米颗粒沉积位置不可控,无序的纳米颗粒易在过渡金属硫化物的边缘和缺陷位置沉积,导致基面位置纳米颗粒厚度不均匀,这就在一定程度上限制了该复合纳米结构的应用。另外,当前关于贵金属纳米颗粒的形貌、尺寸、排列方式及间距等结构参数对复合纳米结构光电性能的影响的研究较少。
本文综述了几种贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构的构筑方法,并综合对比了不同构筑方法的利弊,评述了其光致发光和光生电流强度的改变,最后结合本课题组的研究工作展望了贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴治涌
水世显
张显
杨鹏
万艳芬
关键词:  贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构  等离激元共振效应  光致发光  光生电流    
Abstract: The transition metal dichalcogenides (TMDs) is a family compounds with a formula of MX2, where M and X represent a transition metal and chalcogen, respectively. TMDs are two-dimensional (2D) layered materials like graphene, with a covalently bonded hexagonal network in layers stacked by weak van der Waals forces between layers. However, the zero band gap of pristine graphene seriously restricted its application in most electronic and optoelectronic fields, while the MoS2 submits to a transition from indirect band gap in bulk to a direct band gap in single atom layer. Further transport measurements demonstrate that the field-effect transistors made of TMDs single layer possess high mobility and large on/off ratio. Nevertheless, the applications of TMDs are limited due to their poor light absorption and emission, specially in some light-driven related field. Hence, for the sake of acquiring more superior optoelectronic materials, scientists creatively introduced a heterogeneous integration of the noble metal nanoparticles (NM NPs) and 2D TMDs thin films and utilize the surface plasmon resonance (SPR) of NM NPs as a excitation pump to strengthen the photoluminescence(PL) intensity of 2D TMDs. The hybrids of NM NPs and 2D TMDs exhibit unique optical, electronic, and photoelectrical properties, which hold great promise for their application in expansive fields, including optics, biology, memory materials, electronics and catalysis.
Currently, with regard to the studies on the structure of NM NPs-2D TMDs hybrids, researchers mainly take advantages of diverse structures of NM NPs, including nanospheres, nanorods, nano-islands, nanodisks, nano-antennas and nano core-shell structures to enhance the light absorption, and excite the surface plasmon polaritons in the nm nanostructures, then transfer the energy to 2D TMDs for stimulating the high-intensity light absorption and light emission, and finally realize the modulation of its optical properties. Study on the enhancement characteristics of photoluminescence and photocurrent of the hybrids nanostructures have been carried out as well. To date, the method of fabricating hybrids nanostructures are mainly concentrated on electron beam etching, spin coating, infiltration, etc. However, those hybrids nanostructures built by the me-thods mentioned above exist some defects, for example, the deposition position of the NM NPs is uncontrollable, and the disordered nanoparticles are easily deposited at the edges and defects of the TMDs, resulting in rough thickness of the nanoparticles film on the surface, which restrict their applications to a certain extent. In addition, there is little investigations relating to the impact of the structure parameters like the morphology, size, arrangement and spacing of the NM NPs on photoelectricity properties of the hybrids nanostructures.
Herein, this article rovides a review on several construction methods of the NM NPs-2D TMDs hybrids, comprehensive analysis on their merits and demerits, and discussion of the changes of PL and PC intensities compared with TMDs. Finally, based on the research direction of our group, this article looks into the distance of future developments and challenges for the hybrids of NM NPs and 2D TMDs.
Key words:  noble metal nanoparticles-two-dimensional transition metal dichalcogenides hybrids structure    plasmon resonance    photoluminescence    photocurrent
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51701177;51771170;11764044);云南省自然科学基金(2017FB080;2018FB090);云南省教育厅科学研究基金(2016zzx001)
作者简介:  吴治涌,2018年获得西安电子科技大学硕士学位。在读期间曾参与国家自然科学基金项目一项,并申请两项国家专利。万艳芬,副教授,2013年获得法国巴黎六大博士学位;现工作于云南大学材料科学与工程学院;功能纳米材料研究团队负责人;云南省“千人计划青年人才”。主要从事基于贵金属纳米颗粒自组装的功能复合材料研究。目前正在主持国家自然科学基金面上项目1项、青年项目1项;云南省应用基础研究面上项目1项。yfwan@ynu.edu.cn
引用本文:    
吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
WU Zhiyong, SHUI Shixian, ZHANG Xian, YANG Peng, WAN Yanfen. A Review on Noble Metal Nanoparticles-Two-dimensional Transition Metal Dichalcogenides Nano-hybrids: Preparation and Their Photoelectric Properties. Materials Reports, 2019, 33(3): 426-432.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903008  或          http://www.mater-rep.com/CN/Y2019/V33/I3/426
1 Cain J D, Hanson E D, Shi F, et al.Current Opinion in Solid State and Materials Science,2016,20,374.
2 Chhowalla M, Shin H S, Eda G, et al. Nature Chemistry,2013,5,263.
3 Radisavljevic B, et al. Nature Nanotechnology,2011,6,147.
4 Yu L, Lee Y H, Ling X, et al. Nano Letters,2014,14,3055.
5 Zhou H, Wang C, Shaw J C, et al. Nano Letters,2015,15,709.
6 Zou X, Wang J, Chiu C H, et al. Advanced Materials,2014,26,6255.
7 Ye Y, et al. Applied Physics Letters,2014,104,193508.
8 Lopez-Sanchez O, Lembke D, Kayci M, et al. Nature Nanotechnology,2013,8,497.
9 Sun Y, Gao S, Xie Y. Chemical Society Review,2014,43,530.
10 Bernardi M, Palummo M, Grossman J C. Nano Letters,2013,13,3664.
11 Gao M R, Xu Y F, Jiang J, et al. Chemical Society Review,2013,42,2986.
12 Li X, Zhu J, Wei B. Chemical Society Review,2016,45,3145.
13 Mouri S, Miyauchi Y, Matsuda K. Nano Letters,2013,13,5944.
14 Joo P, Jo K, Ahn G, et al. Nano Letters,2014,14,6456.
15 Nan H, Wang Z L, Wang W H, et al. ACS Nano,2014,8,5738.
16 Gao W, Lee Y H, Jiang R, et al. Advanced Materials,2016,28,701.
17 Sobhani A, Lauchner A, Najmaei S, et al. Applied Physics Letters,2014,104,031112.
18 Chen H, Yang J, Rusak E, et al. Scientific Reports,2016,6,22296.
19 Novoselov K S, Jiang D, Schedin F, et al. Proceedings of the National Academy of Sciences of the United States of America,2005,102,10451.
20 Mak K F,Lee C,Hone J,et al.Physical Review Letters,2010,105,136805.
21 Li H, Wu J, Yin Z, et al. Accounts of Chemical Research,2014,47,1067.
22 Wu J, Li H, Yin Z, et al. Small,2013,9,3314.
23 Yin Z Y, Li H, Li H, et al. ACS Nano,2012,6,74.
24 Li H, Yin Z, He Q, et al. Small,2012,8,63.
25 Zhou K G, Mao N N, Wang H X, et al. Angewandte Chemie International Edition,2011,50,10839.
26 Zhang S L, Choi H H, et al. Current Applied Physics,2014,14,264.
27 Coleman J N, Lotya M, O’Neill A, et al. Science,2011,331,568.
28 Liu Y D, et al. Journal of Alloys and Compounds,2013,571,37.
29 Zeng Z, Sun T, Zhu J, et al. Angewandte Chemie International Edition,2012,51,9052.
30 Zeng Z, Yin Z, Huang X, et al. Angewandte Chemie International Edition,2011,50,11093.
31 Shi J P, Ma D L, Han G F, et al. ACS Nano,2014,8,10196.
32 Liu K K, Zhang W J, Lee Y H, et al. Nano Letters,2012,12,1538.
33 Lu J P, Lu J H, Liu H W, et al. Small,2015,11,1792.
34 Ji Q, Zhang Y, Gao T, et al. Nano Letters,2013,13,3870.
35 Ji Q, Zhang Y, et al. Chemical Society Reviews,2015,44,2587.
36 Kong D, Wang H, Cha J J, et al. Nano Letters,2013,13,1341.
37 Lee Y H, Zhang X Q, et al. Advanced Materials,2012,24,2320.
38 Liu H, Si M, Najmaei S, et al. Nano Letters,2013,13,2640.
39 Shaw J C, Zhou H, Chen Y, et al. Nano Research,2015,7,511.
40 Zhan Y, Liu Z, Najmaei S, et al. Small,2012,8,966.
41 Yang S Y, Shim G W, Seo S B, et al. Nano Research,2016,10,255.
42 Xie J F, Zhang H, Li S, et al. Advanced Materials,2013,25,5807.
43 Li Y, Wang H, Xie L, et al. Journal of the American Chemical Society,2011,133,7296.
44 Tang G, Tang H, Chen W, et al. Micro & Nano Letters,2013,8,164.
45 Yan Y, et al. ACS Applied Materials & Interfaces,2013,5,12794.
46 Ye L, Xu H, Zhang D, et al. Materials Research Bulletin,2014,55,221.
47 Butun S, Tongay S, Aydin K. Nano Letters,2015,15,2700.
48 Fu C Y, Xing S, Shen T, et al. Acta Physica Sinica,2016,64,016102(in Chinese).
傅重源,邢淞,沈涛,等.物理学报,2016,64,016102.
49 Najmaei S, Mlayah A, Arbouet A, et al. ACS Nano,2014,8,12682.
50 Wang X, Deng W P, et al. New Journal of Chemistry,2015,39,8100.
51 Li Y, Cain J D, Hanson E D, et al. Nano Letters,2016,16,7696.
52 Miao J, Hu W, Jing Y, et al. Small,2015,11,2392.
53 Bhanu U, Islam M R, Tetard L, et al. Scientific Reports,2014,4,5575.
54 Lee B, Park J, Han G H, et al. Nano Letters,2015,15,3646.
55 Zu S, Li B, Gong Y J, et al. Advanced Optical Materials,2016,4,1463.
56 Mulpur P, Yadavilli S, Rao A M, et al. ACS Sensors,2016,1,826.
57 Lu J, Lu J H, Liu H, et al. Small,2015,11,1792.
58 Kim J, et al. Journal of Physical Chemistry Letters,2013,4,1227.
59 Yin Z, Chen B, Bosman M, et al. Small,2014,10,3537.
60 Shi Y, Huang J K, Jin L, et al. Scientific Reports,2013,3,1839.
61 Zhang P, et al. Journal of Materials Chemistry A,2015,3,14562.
62 Singha S S, Nandi D, Singha A. RSC Advances,2015,5,24188.
63 Shakya J, Patel A S, et al. Applied Physics Letters,2016,108,013103.
64 Wang X, Chu C, Shen L, et al. Sensors and Actuators B,Chemical,2015,206,30.
65 Cheah A J, et al. Catalysis Science & Technology,2015,5,4133.
66 Rao B G, Matte H S S R, Rao C N R. Journal of Cluster Science,2012,23,929.
67 Huang X, Zeng Z, Bao S, et al. Nature Communications,2013,4,1444.
68 Zhou L, He B, Yang Y, et al. RSC Advances,2014,4,32570.
69 Yan J, Ma C, Liu P, et al. ACS Photonics,2017,4,1092.
70 Cheng F, Johnson A D, Tsai Y, et al. ACS Photonics,2017,4,1421.
71 Mukherjee B, Kaushik N, et al. Scientific Reports,2017,7,41175.
72 Li Z, Li Y, Han T, et al. ACS Nano,2017,11,1165.
73 Bhanu U, Islam M R, Tetard L, et al. Scientific Reports,2014,4,5575.
74 Kern J, Trügler A, Niehues I, et al. ACS Photonics,2015,2,1260.
75 Choi S Y, Yip C T, Li G C, et al. AIP Advances,2015,5,067148.
76 Wang Z, Dong Z, Gu Y, et al. Nature Communications,2016,7,11283.
77 Wang X, Song L, Chen L, et al. Advances in Material Chemistry,2014(2),49(in Chinese).
王轩,宋礼,陈露,等.材料化学前沿,2014(2),49.
78 Lin J, Li H, Zhang H, et al. Applied Physics Letters,2013,102,203109.
[1] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[2] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[3] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[4] 张小红, 杨卿, 张旭晨, 马研, 易筱银. 热氧化ZnS∶Ga制备ZnO∶Ga薄膜及其光致发光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 11-15.
[5] 彭智伟,刘志宇,傅刚. ZnO四足和多足纳米结构的制备和光致发光性能研究*[J]. 材料导报编辑部, 2017, 31(10): 16-18.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed