Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 433-437    https://doi.org/10.11896/cldb.201903009
  无机非金属及其复合材料 |
铁电负电容晶体管的研究进展
谭欣, 翟亚红
电子科技大学微电子与固体电子学院,成都 610054
A State-of-the-art Review on Ferroelectric Negative Capacitance Transistor
TAN Xin, ZHAI Yahong
School of Micro-Electronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054
下载:  全 文 ( PDF ) ( 1435KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁电负电容晶体管的亚阈值斜率可低于60 mV/dec的理论极限,是未来突破晶体管工作电压VDD和器件尺寸进一步减小瓶颈的关键。自2008年低功耗负电容晶体管的概念被提出以来,该晶体管因简单的器件结构和优异的电路性能而一直受到业界学者的广泛关注。然而,这种基于具有负电容特性铁电材料的晶体管的缺点也日渐凸显,特别是负电容的不稳定性对该晶体管的应用造成严重阻碍。相比传统晶体管,负电容晶体管应用于低功耗电路具有两大优势:(1)亚阈值斜率可低于60 mV/dec,降低电路工作电压的同时开关电流比不会下降,静态泄露电流不增加;(2)器件尺寸更小,减小电路面积。
然而,负电容晶体管由于铁电材料的滞回特性,在开关电路中具有严重的滞回现象,导致电路逻辑紊乱,无法正常工作。不仅如此,负电容成因的复杂性也使其建模非常困难。因此,近十年来除研究铁电材料种类和参数对器件性能的影响外,研究者们还整理出了决定滞回现象的关键因素,并提出了有效抑制滞回现象的方法。目前,通过调整铁电负电容和晶体管电容的比例,滞回窗口已经可以减小到近乎为零。而与实验图形较吻合的负电容数学模型直到2017年才出现,但模型中的数据还没有科学的测定方法,目前还处于发展完善阶段,仍需要大量的研究和探索。
负电容晶体管制备过程简单,工艺和标准CMOS工艺兼容,基底MOSFET制作完成后,将具有负电容特性的铁电材料沉积在栅上形成叠栅。负电容晶体管制作的难点在于稳固铁电和氧化物界面、减少缺陷空位。目前,国内外已出现流片成功的负电容晶体管,成品测试的最小亚阈值斜率可达16 mV/dec,但滞回现象出现的概率非常大,并且在提高器件的疲劳性和稳定可靠性方面还需要投入更多的研究。使用频率较高的负电容材料有PbZrTiO3 (PZT)、SrBi2Ta2O9(SBT)、P(VDF-TrFE)、铪基氧化物等,其中铪基氧化物因环保、体积小、性能优异被认为是可投入实际生产的铁电负电容材料。
本文探讨了铁电负电容晶体管的工作原理,分析了负电容特性的物理机理和实验测试方法,给出国际上各研究机构在负电容晶体管(NCFET)方面的研究进展情况,最后分析了未来NCFET在器件结构、材料及可靠性方面的发展问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭欣
翟亚红
关键词:  铁电  负电容  负电容晶体管(NCFET)  低功耗    
Abstract: It is possible for ferroelectric negative capacitance transistor to make the sub-threshold swing lower than the theoretical limit of 60 mV/dec, which is the key to break through the bottleneck of reducing working voltage VDD and device size in the future. Since the concept of low power consumption negative capacitance transistor was proposed in 2008, this kind of transistor has been attracting numerous attention from researchers thanks to its simple device structure and excellent circuit performance. Nevertheless, the weakness of the transistor that based on ferroelectric materials with negative capacitance characteristics are becoming increasingly prominent, particularly, the instability of negative capacitance. It must be a serious block for the application of the transistor. Compared with conventional transistors, negative capacitance transistors exhibit two great advantages when applied to low-power circuits. First, the sub-threshold slope can be lower than 60 mV/dec, and there will be no decline in switching current ratio and no increase in static leakage current while the circuit operating voltage is reduced. Second, the device size can be smaller which contribute to the reduction of circuit area.
However, due to the hysteresis characteristic of ferroelectric materials, the negative capacitance transistor show serious hysteresis in switching circuit, leading to the disorder of logic circuit and abnormal working situation. Besides, the complexity of the cause of negative capacitance makes it quite difficult to be modeled. Hence, in recent 10 years, in addition to studying the effects of ferroelectric material and its parameters on device performance, the researchers have also put great efforts in sorting out the key factors that dominate the hysteresis phenomenon, and proposed several effective methods to suppress hysteresis phenomenon. At present, hysteresis window can approach to zero through adjusting the proportion of negative capacitance and transistor capacitance. The mathematical model of negative capacitance, which was in good agreement with the experimental results, did not appear until 2017. Whereas, there is no scientific measuring method for the parameters in the model, and further researches and explorations are still needed.
The fabrication process of negative capacitance transistor is simple, and compatible with standard CMOS process. After the completion of baseline MOSFET, ferroelectric material with negative capacitance characteristics are deposited on the top of the gate to form a cascade gate. The difficulty of preparing negative capacitor transistors lies in stabilizing the interface between ferroelectric and oxide and reducing the defects and vacancies. Currently, negative capacitance transistors, whose minimum subthreshold slope of the final product can reach as low as 16 mV/dec, have been successful fabricated in laboratory both at home and abroad. However, it suffers from extremely high occurence probability of hysteresis, and more research is needed to improve the fatigue ability, stability and reliability of the devices. Ferroelectric materials that are commonly used in negative capacitance transistor include PbZrTiO3 (PZT), SrBi2Ta2O9 (SBT), P(VDF-TrFE), hafnium-based oxides. Among them, haf-nium-based oxides are recognized as suitable materials for practical production and application because of their environmental friendliness, small size, and excellent performance.
In this article, the working principle of ferroelectric negative capacitance transistor is discussed, the physical mechanism and experimental test method of negative capacitance characteristics are analyzed, the latest progress in negative capacitance transistor(NCFET) made by worldwide institutions is introduced. Finally, the future development direction of NCFET in device structure, material selection and device reliability is proposed.
Key words:  ferroelectric    negative capacitance    negative capacitance transistor(NCFET)    low power dissipation
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TN303  
基金资助: 电子元器件可靠性物理及其应用技术重点实验室开放基金(ZHD201601);中央高校基本科研业务费专项资金(ZYGX2016J047)
作者简介:  谭欣,2016年7月毕业于电子科技大学,获得工学学士学位。现为电子科技大学电子信息与工程学院研究生,在翟亚红副教授的指导下进行研究。目前主要研究领域为负电容铁电晶体管。翟亚红,2005年在电子科技大学获硕士学位后留校工作,2013年获电子科技大学博士学位,2014年9月至2015年9月在美国Stanford大学电子工程系作为博士后/访问学者,进行基于密度泛函分析法(DFT)的新型存储器的研究。主要研究方向为:新型微纳电子器件与集成系统技术,包括新型存储器、低功耗器件及集成系统等。在国内外学术期刊和会议发表论文20余篇。yhzhai@uestc.edu.cn。
引用本文:    
谭欣, 翟亚红. 铁电负电容晶体管的研究进展[J]. 材料导报, 2019, 33(3): 433-437.
TAN Xin, ZHAI Yahong. A State-of-the-art Review on Ferroelectric Negative Capacitance Transistor. Materials Reports, 2019, 33(3): 433-437.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903009  或          http://www.mater-rep.com/CN/Y2019/V33/I3/433
1 Choi W Y, Park B G, Lee J D, et al. IEEE Electron Device Letters,2007,28(8),743.
2 Gopalakrishnan K, Griffin P B, Plummer J D. In: Conference Record of the 2002 IEEE International Electron Devices Meeting. San Francisco,2002,pp.289.
3 Kam H, Lee D T, Howe R T, et al. In: IEEE International Electron Devices Meeting. Washington,2005,pp.463.
4 Zhirnov V V, Cavin R K. Nature Nanotechnology,2008,3(2),77.
5 Huang Q, Huang R. In: Electron Devices Meeting (IEDM), San Francisco,2012,pp.8.
6 Enachescu M, Lefter M. In: The IEEE International Symposium on Circuits and Systems (ISCAS). San Francisco,2013,pp.566.
7 Ionescu A M, Riel H. Nature,2011,479(7373),329.
8 Roy K,Mukhopadhyay S, Mahmoodi-Meimand H. Proceedings of the IEEE,2003,91(2),305.
9 Chen X B, Zhang Q Z, Chen Y. Microelectronic Devices, Publishing House of Electronics Industry,2011(in Chinese).
陈星弼,张庆中,陈勇.微电子器件,电子工业出版社,2011.
10 KhanA I. Negative capacitance for ultra-low power computing. Doctor’s thesis, University of California, USA,2015.
11 Khan A I,Chatterjee K, Wang B, et al. Nature Materials,2015,14(2),182.
12 Sharma P, Zhang J, Saha A K, et al. In: 75th Device Research Confe-rence. South Bend,2017,pp. 1.
13 Jang K,Ueyama N, Kobayashi M, et al. IEEE Journal of the Electron Devices Society,2018,6,346.
14 Salahuddin S, Datta S. In: IEEE Transactions on Industral Electronics. San Francisco,2008,pp.1.
15 Lenarczyk P. In: 2016 International Conference on IEEE. Nuremberg,2016,pp.311.
16 Pahwa G, Dutta T, Agarwal A, et al. IEEE Transactions on Electron Devices,2017,64(3),1366.
17 Hoffmann M,Peić M, Slesazeck S, et al. In: Conference Record of the 2017 IEEE second Joint International EUROSOI and ULIS Conference. Vienna,2017,pp.1.
18 Lin C I, Khan A I,Salahuddin S, et al. IEEE Transactions on Electron Devices,2016,63(5),2197.
19 Jaesung J,Changhwan S. IEEE Electron Device Letters,2016,37(2),245.
20 Jo J, KhanA I, Cho K, et al. In: IEEE Silicon Nanoelectronics Workshop. Honolulu,2016,pp.174.
21 Khan A I,Radhakrishna U,Chatterjee K, et al. IEEE Transactions on Electron Devices,2016,63(11),4416.
22 Khan A I,Radhakrishna U, Salahuddin S, et al. IEEE Electron Device Letters,2017,38(9),1335.
23 Khandelwal S, Duarte J P, Khan A I, et al. IEEE Electron Device Letters,2017,38(1),142.
24 Ota H,Migita S, Hattori J, et al. In: 16th International Conference on IEEE. Sendai,2016,pp.770.
25 Liu C, Chen P G,Xie M J, et al. Japanese Journal of Applied Physics,2016,55,04EB08.
26 Li Cong. Study of nanometer gate-all-around MOSFET devices. Doctor’s thesis, Xi’an University of Electronic Science and Technology, China,2011(in Chinese).
李聪.纳米围栅MOSFET器件研究.博士学位论文,西安电子科技大学,2011.
27 Jiang C, Liang R,Xu J. IEEE Transactions on Nanotechnology,2017,16(1),58.
28 Eunah K, Jae W L, Shin C. IEEE Electron Device Letters,2017,38(4),418.
29 Chiu Y C. IEEE Transactions on Electron Devices,2017,64(8),3498.
30 Zhou J, Han G, Li Q, et al.In: Electron Devices Meeting. San Francisco,2016,pp.12.
31 Zhou J, Han G,Peng Y, et al. IEEE Electron Device Letters,2017,38(8),1157.
32 Jo J,Shin C. IEEE Electron Device Letters,2016,37(3),245.
33 Jo J,Choi W Y, Park J D, et al. Nano Letters,2015,15(7),4553.
34 Lee M H, Wei Y T, Chu K Y, et al. IEEE Electron Device Letters,2015,36(4),294.
35 Wu J,Kanyang R, Han G, et al. IEEE Electron Device Letters,2018,39(4),614.
36 Mcguire F A, Lin Y C, In: 75th Annual IEEE. South Bend,2017,pp.1.
37 Lee M H, Chen P G, Fan S T, et al. In: Conference Record of the 2017 IEEE Electron Devices Meeting. San Francisco,2017,pp.565.
38 Bahng J, Lee H, Park M, et al. Applied Physics Letters,2001,79(11),1664.
39 Ye Z, Tang M H, Zhou Y C, et al. Applied Physics Letters,2007,90(4),042902.
40 Guan Y. Study of the reliability characteristics for Si-doped HfO2 ferroelectric thin films. Doctor’s thesis, Dalian University of Technology, China,2016(in Chinese).
关燕.Si掺杂HfO2铁电薄膜的可靠性研究.博士学位论文,大连理工大学,2016.
41 Ding W, Zhu J, Wang Z, et al.Nature Communications,2017,8,14956.
[1] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[2] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[3] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[4] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[5] 张贺贺, 李芳芳, 王海燕, 彭志光, 唐有根. 基于Fe/Co-MOF制备的高性能镍铁电池铁电极及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(5): 719-724.
[6] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[7] 郑奎,袁昌来,周星星,王维清,许积文,周昌荣. Ba0.04Bi0.48Na0.48TiO3-SrTiO3陶瓷微结构和储能性能[J]. 《材料导报》期刊社, 2018, 32(2): 171-175.
[8] 熊建功,张创伟,王 康,孔令仪,赵弋菲,陈 龙,李永涛. Sr、Co共掺多铁性材料BiFeO3的性能[J]. 《材料导报》期刊社, 2018, 32(10): 1582-1586.
[9] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
[10] 王歆钰, 镇思琦, 董正超, 仲崇贵. 铁电材料的电热效应及其研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 13-18.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed