Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 791-796    https://doi.org/10.11896/cldb.201905010
  无机非金属及其复合材料 |
掺杂对BiFeO3薄膜电、磁特性影响综述
阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰
新疆大学物理科学与技术学院,乌鲁木齐 830046
Impact of Doping on Electrical and Magnetic Properties of BiFeO3 Thin Films:a Review
SALAMU Abidiguli, IMINNIYAZ Hoernisa, MAMAT Mamatrishat, WU Zhaofeng
School of Physics and Technology, Xinjiang University, Urumqi 830046
下载:  全 文 ( PDF ) ( 1589KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科技的高速发展,多铁性材料已经成为传感器、微波器件、数据存储、自旋电子学及太阳能电池等领域的研究热点,在智能材料与器件方向显示出可观的应用潜力。BiFeO3及其衍生的一系列材料 Bi1-xAxFeO3 (A=La,Nd,Sm)、BiFexB1-xO3(B=Ni,Mn,Co)的发现使得多铁性材料获得了更迅猛的发展。这类材料属于单相钙钛矿氧化物型多铁材料,在室温以上同时具有铁电、压电、介电、电光、铁磁、光伏、磁电耦合、光催化等效应。BiFeO3作为一种单相多铁性材料,与同类的多铁性材料相比,其具有较高的居里温度、尼尔温度以及较小的光学禁带宽度和较好的化学稳定性等特点。
然而,在制备BiFeO3的过程中,部分Fe3+向Fe2+转变,并且铋元素熔点较低容易挥发,产生大量的氧空位,造成漏电流较大,很难得到具有较高剩余极化强度的样品;并且BFO薄膜室温下弱的磁性等性质使其实际应用受到极大的限制。多年来国内外学者致力于改善制备条件和参数,使用更先进的制备方法,改用更合适的衬底材料及进行离子掺杂等,以制备多层复合薄膜。其中,离子掺杂对减小漏电流,提高铁电性及室温磁性方面的效果最为理想。
各国研究者已经制备出比纯BiFeO3材料性能更好的掺杂和复合BiFeO3材料。在不同的位置掺杂多种元素较掺杂单一元素能更好地改善材料的性能。最新报道的采用溶胶-凝胶法制备的多个混合掺杂离子Bi0.88Sr0.03Gd0.09Fe0.94Mn0.04Co0.02O3薄膜的剩余极化强度增加到108 μC/cm2,显著高于La、Mn、Zn等元素单掺杂得到的极化强度(69.47 μC/cm2)。同时,掺杂BiFeO3薄膜的磁化强度比纯BiFeO3薄膜提高了3~4倍。这可能是源于:掺杂离子抑制Bi3+的挥发和Fe3+的还原,减小氧空位和缺陷浓度,从而减小漏电流,进一步改善BiFeO3薄膜的铁电性能;掺杂离子也会导致结构的畸变而打破其螺旋磁结构,从而产生较强的室温磁性。
本文首先简单介绍了BiFeO3材料的结构及其掺杂元素的种类,然后讨论了A位、B位和AB位共掺杂离子对提高BiFeO3薄膜弱的室温磁性以及减小漏电流、提高铁电性产生的影响,并进一步分析了产生影响的原因,最后提出了未来研究工作的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阿比迪古丽·萨拉木
吾尔尼沙·依明尼亚孜
买买提热夏提·买买提
吴钊峰
关键词:  铁酸铋(BiFeO3)薄膜  铁电性  磁性  离子掺杂    
Abstract: With the rapid development of science and technology, multiferroic materials have become a research focus in the fields of sensors, microwave devices, data storage, spintronics, solar cells and so forth, exhibiting considerable application potential in intelligent materials and devices. The discovery of BiFeO3 and its derivatives, like Bi1-xAxFeO3 (A=La, Nd, Sm) and BiFexB1-xO3 (B=Ni, Mn, Co), has greatly accele-rated the advance of the multiferroic materials. This kind of material belongs to the single-phase perovskite type multiferroic materials, showing its superiority in integrated effects of ferroelectric, piezoelectric, dielectric, electrooptic, ferromagnetic, photovoltaic, magnetoelectric coupling and photocatalytic properties over room temperature. As a single phase multiferroic material, BiFeO3 features higher Curie temperature and Neal temperature, smaller optical band gap and better chemical stability compared with similar ferroelectric material.
However, in the process of preparing BiFeO3, partial Fe3+ is converted to Fe2+, and bismuth is likely to volatilize because of its low melting point, producing a large number of oxygen vacancies and resulting in large leakage current. It is very difficult to have high residual polarization samples. Besides, weak magnetic properties of the BFO films at room temperature greatly limit its practical application. Over the years, scholars at home and abroad have devoted themselves to improving the preparation conditions and parameters, developing more advanced preparation methods, selecting more suitable substrate materials, preparing multilayer composite films and conducting ion doping et al. Among all the improvement approaches, ion doping plays the most prominent role to reduce leakage current, improve ferroelectricity and room temperature magnetism.
Researchers over the world have successively prepared doped and composite BiFeO3 materials with superior properties to pure BiFeO3. Doping multiple elements at different positions rather than doping single element exert more favorable effect on improving the performance of BiFeO3materials. The residual polarization of Bi0.88Sr0.03Gd0.09Fe0.94Mn0.04Co0.02O3 films with mixed doped ions prepared by sol-gel method has been raised to 108 μC/cm2, which is significantly higher than that of materials singly doped by La, Mn, Zn and other elements (69.47 μC/cm2). Meanwhile, the magnetization of the doped BiFeO3 film is three to four times higher than that of the pure BiFeO3 film. This may be derived from the inhibition of Bi3+ volatilization and Fe3+ reduction by doping elements, which contribute to reducing the oxygen vacancy and defect concentration, controlling the leakage current and raising the dielectric constant, and further improving the ferroelectric properties of the BiFeO3 film. In addition, doping elements also lead to the structural distortion and break the spiral magnetic structure of the material, thus producing strong magnetic properties at room temperature.
Firstly, the structure of BiFeO3 materials and the types of doped elements in its modification are briefly described in this article. Secondly, the effects of A, B and AB co-doped ions on improving weak magnetic properties of BiFeO3 thin films and improving ferroelectric properties by redu-cing leakage current are discussed, and the reasons for the influences are further summarized. Finally, the research work to be carried out is proposed.
Key words:  bismuth ferrite (BiFeO3) thin film    ferroelectricity    magnetic property    ion doping
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  O484.4+1  
  O484.4+3  
基金资助: 国家自然科学基金(61366001;11365022);自治区研究生创新项目(XJGRI2016008)
作者简介:  阿比迪古丽·萨拉木,2015年6月毕业于济南大学,获得理学学士学位。现为新疆大学硕士研究生,在买买提热夏提·买买提副教授的指导下进行研究。目前主要研究方向为材料物理。买买提热夏提·买买提,新疆大学物理科学与技术学院副教授、硕士研究生导师。1998年7月、2002年7月先后本科、硕士毕业于新疆大学物理系,2012年3月在日本东京工业大学应用物理与微电子学专业取得博士学位,回国后至今一直工作在新疆大学,自2017年9月至2018年7月访问浙江大学物理系。主要从事材料物理和凝聚态物理研究工作。mmtrxt@xju.edu.cn
引用本文:    
阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
SALAMU Abidiguli, IMINNIYAZ Hoernisa, MAMAT Mamatrishat, WU Zhaofeng. Impact of Doping on Electrical and Magnetic Properties of BiFeO3 Thin Films:a Review. Materials Reports, 2019, 33(5): 791-796.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905010  或          http://www.mater-rep.com/CN/Y2019/V33/I5/791
1 Azizi Z S, Tehranchi M M, Hamidi S M, et al. Physica Status Solidi,2017,214(2),1600505.
2 Jochum J K, Lorenz M, Gunnlaugsson H P, et al. Nanoscale,2018,10(12),5574.
3 Guo B L, Deng H M, Zhai X Z, et al. Materials Letters,2017,186,198.
4 Mori T J A, Mouls C L, Morgado F F, et al. Journal of Applied Physics,2017,122(12),124102.
5 Hasan M, Islam M F, Mahbub R, et al. Materials Research Bulletin,2016,73,179.
6 Wu H, Xue P, Lu Y, et al. Journal of Alloys and Compounds,2018,731,471.
7 Gomez-Iriarte G A, Labre C, De Oliveira L A S, et al. Journal of Magnetism and Magnetic Materials,2018,460,83.
8 Fiebig M, Lottermoser T, Meier D, et al. Nature Reviews Materials,2016,1(8),1.
9 Trassin M. Journal of Physics: Condensed Matter,2016,28(3),033001.
10 Fiebig M, Lottermoser T, Meier D, et al. Nature Reviews Materials,2016,1(8),16046.
11 Nicola A S. MRS Bulletin,2017,42(5),385.
12 Sharma S, Saravanan P, Pandey O P, et al. Journal of Materials Science: Materials in Electronics,2016,27(6),5909.
13 Vanga P R, Mangalaraja R V, Ashok M. Journal of Materials Science: Materials in Electronics,2016,27(6),5699.
14 Deng X L, Wang W, Gao R L, et al. Journal of Materials Science: Materials in Electronics,2018,29(8),6870.
15 Ling F, Liu L M, Chen X B, et al. Bulletin of the Chinese Ceramic Society,2015,34,262.
16 Jalaja M A, Soma Dutta. Advanced Materials Letters,2015,6(7),568.
17 Kuila S, Tiwary S, Sahoo M R, et al. Journal of Alloys and Compounds,2017,709,158.
18 Zhang Y L, Qi J, Wang Y H, et al. Ceramics International,2018,44(6),6054.
19 Huang Y Ch, Liou Y D, Liu H J, et al. APL Materials,2017,5(8),086112.
20 Yu L, Deng H M, Zhou W L, et al. Materials Letters,2016,170,85.
21 Wang C J, Zhang F Q, Guo X D, et al. Rare Metal Materials and Engineering,2015,44(1),13.
22 Wang T T, Deng H M, Meng X K, et al. Ceramic International,2017,43,8792.
23 Yan J, Hu G D, Jiang X M. Journal of Materials Science: Materials in Electronics,2017,28,10400.
24 Agbelele A, Sando D, Toulouse C, et al. Advanced Materials,2017,29(9),16023270.
25 Lam S M, Sin J C, Mohamed A R. Materials Research Bulletin,2017,90,15.
26 Xie H, Tan J B, Gu Q B. Journal of Hubei University of Education,2017,34(8),8(in Chinese).
谢浩,谭敬铂,顾期斌.湖北第二师范学院学报,2017,34(8),8.
27 Cui S M, Xu Y F, Zhou T, et al. Journal of Huzhou Teachers College,2016,38(10),14(in Chinese).
崔晓明,徐燕飞,周挺,等.湖州师范学院学报,2016,38(10),14.
28 Anju, Ashish A, Praveen A, et al. Ceramic International,2017,43,7408.
29 Pulikkathodi A K, Suresh V, Yang S M, et al. In: Conference Record of the 2013 IEEE International Conference of Electron Devices and Solid-state Circuits. Hong Kong, China,2013,pp.1.
30 Laughlin R P, Currie D A, Contreras-Guererro R, et al. Journal of Applied Physics,2013,113(17),9191.
31 Heron J T, Schlom D G, Ramesh R, et al. Applied Physics Reviews,2014,1(2),3031.
32 Zi Y B. Study on the preparation and properties of BiFeO3 thin film and devices. Master’s Thesis, University of Science and Technology of China, China,2009(in Chinese).
訾玉宝.BiFeO3薄膜及器件的制备与性能研究.硕士学位论文,中国科学技术大学,2009.
33 Li J F, Wang J L, Wuttig M, et al. Applied Physics Letters,2004,84(25),5261.
34 Gupta S, Tomar M, James A R, et al. Journal of Materials Science,2014,49(15),5355.
35 Yan F, Zhu T J, Lai M O, et al. Scripta Materialia,2010,63(7),780.
36 Sun W, Li J F, Yu Q, et al. Journal of Materials Chemistry C,2015,3(9),2115.
37 Xing W, Ma Y, Ma Z, et al. Smart Materials and Structures,2014,23(8),085030.
38 Yan F, Lai M O, Lu L, et al. Journal of Physical Chemistry C,2010,114(15),6994.
39 Barman R, Kaur D. Vacuum,2017,146,221.
40 Yang S, Zhang F, Xie X, et al. Journal of Alloys and Compounds,2018,734,243.
41 Dong G, Tan G, Liu W, et al. Ceramics International,2014,40(1),1919.
42 Kawae T, Tsuda H, Morimoto A. Applied Physics Express,2008,1,051601.
43 Yan X, Tan G, Liu W, et al. Ceramics International,2015,41(2),3202.
44 Yun Q, Xing W, Chen J, et al. Thin Solid Films,2015,584,103.
45 Chai Z J, Tan G Q, Yue Z W, et al. Journal of Alloys & Compounds,2018,746(25),677.
46 Zhang J. Structure and magnetic properties in La, Er doped BiFeO3 thin films. Master’s Thesis, Jilin Normal University, China,2014(in Chinese).
张静.Er,La掺杂对BiFeO3薄膜的结构和磁性的影响.硕士学位论文,吉林师范大学,2014.
47 Lee Y H, Wu J M, Lai C H. Applied Physics Letters,2006,88(4),0429031.
48 Lazenka V V, Ravinski A F, Makoed I I, et al. Applied Physics Reviews,2012,111(12),1239161.
49 Anthonyraj C, Muneeswaran M, Gokul Raj S, et al. Journal of Materials Science: Materials in Electronics,2015,26(1),49.
50 Zhai X Z, Deng H M, Yang P X, et al. Materials Letters,2015,158,266.
51 Cui J Y, Yang P X, Chu J H. Journal of Infrared and Millimeter Waves,2016,35(3),322(in Chinese).
崔金玉,杨平雄,褚君浩.红外与毫米波学报,2016,35(3),322.
52 Li M, Hu Z, Pei L, et al. Ferroelectrics,2010,410(1),3.
53 Fu C J, Huang Z X, Li J, et al. Materials Review B: Research Papers,2010,24(2),17(in Chinese).
付承菊,黄志雄,李杰,等.材料导报:研究篇,2010,24(2),17.
54 Gao F, Cai C, Wang Y, et al. Applied Physics,2006,99(9),0941051.
55 Yuan G L, Siu Wing Or, Chan H L W, et al. Applied Physics,2007,101(2),0241061.
56 Guo D Y, Li C, Wang C B, et al. Acta Physica Sinica,2010,59(8),5772(in Chinese).
郭冬云,李超,王传彬,等.物理学报,2010,59(8),5772.
57 Liu J, Deng H M, Zhai X Z, et al. Material Letters,2014,133(10),49.
58 Sharma Y, Martinez R, Agarwal R, et al. Applied Physics,2016,120(19),101.
59 Baetting P, Ederer C, Spaldin N A, et al. Physical Review B,2005,72(21),2141051.
60 Liu K T, Li J, Xu J B, et al. Journal of Materials Science: Materials in Electronics,2017,28(7),5609.
61 Wang T T, Deng H M, Cao H Y, et al. Materials Letters,2017,199,116.
62 Kuang D H, Tang P, Wu X H, et al. Journal of Alloys and Compounds,2016,8388(16),303501.
63 Du L Q, Deng S L, Xi H M, et al. Materials Review B: Research Papers,2016,30(11),43(in Chinese).
杜奕全,邓施列,冼慧敏,等.材料导报:研究篇,2016,30(11),43.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[3] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[4] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[5] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[6] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[7] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[8] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[9] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[10] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[11] 谢丽娜, 罗聪, 吴嘉敏, 王昌绚, 邬均. 利用均匀磁场提高聚乙烯亚胺-Fe3O4纳米颗粒复合物的磁转染效果[J]. 《材料导报》期刊社, 2018, 32(8): 1247-1251.
[12] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[13] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[14] 李旭,汪子孺,杨莉,张振东,张友婷,杜毅帆. 稻糠基磁性高吸油材料的仿生制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 219-222.
[15] 郑奎,袁昌来,周星星,王维清,许积文,周昌荣. Ba0.04Bi0.48Na0.48TiO3-SrTiO3陶瓷微结构和储能性能[J]. 《材料导报》期刊社, 2018, 32(2): 171-175.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed