Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 171-175    https://doi.org/10.11896/j.issn.1005-023X.2018.02.002
  物理   材料研究 |材料 |
Ba0.04Bi0.48Na0.48TiO3-SrTiO3陶瓷微结构和储能性能
郑奎1,袁昌来2,周星星1,王维清1,许积文2,周昌荣2
1 西南科技大学分析测试中心, 绵阳 621010
2 桂林电子科技大学,广西信息材料重点实验室,桂林 541004
Microstructures and Energy-storage Properties of Ba0.04Bi0.48Na0.48TiO3-SrTiO3 Ceramics
Kui ZHENG1,Changlai YUAN2,Xingxing ZHOU1,Weiqing WANG1,Jiwen XU2,Changrong ZHOU2
1 Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010
2 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 4482KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用传统固相反应法制备了一种无铅储能铁电陶瓷 (1-x)Ba0.04Bi0.48Na0.48TiO3-xSrTiO3 (x=0.27、0.28、0.30、0.32、0.34、0.36),研究了该陶瓷体系的微观结构、铁电、介电和电导率特征。所有陶瓷均形成了钙钛矿结构固溶体,晶粒尺寸均匀且致密。各陶瓷所得铁电曲线趋于双电滞回线,呈现反铁电特征,剩余极化强度较小,击穿强度高。当x=0.34时,可获得0.977 J/cm 3的较优储能值,陶瓷弥散程度高,表现为典型的弛豫特性。此含量对应低频下陶瓷的离子电导率为2.4×10 -8 S/cm,电子电导率为6.02×10 -13 S/cm,表明离子电导居于主导地位。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑奎
袁昌来
周星星
王维清
许积文
周昌荣
关键词:  Ba0.04Bi0.48Na0.48TiO3-SrTiO3  储能  铁电性  微结构    
Abstract: 

(1-x)Ba0.04Bi0.48Na0.48TiO3-xSrTiO3 (x=0.27,0.28,0.30,0.32,0.34 and 0.36) lead-free energy storage cera-mics were produced by conventional solid-state reaction processes. Microstructures, electrical properties, dielectric properties and conductivity characteristic of BBNT-xST ceramics were investigated. All of the ceramics formed solid solutions with simple perovskite structure and grain size of the ceramics is uniform and compact. Ferroelectric curves of all the ceramics showed a double hysteresis loop owning a quite low remnant polarization and high breakdown strength, demonstrating an antiferroelectric characteristic. Up to x=0.34, the largest energy-storage density of 0.977 J/cm 3 was obtained and high dielectric dispersion of the ceramic suggested a typical relaxor behavior. Electronic conductivity of the ceramic with x=0.34 was 6.02×10 -13 S/cm while the corresponding ionic conductivity 2.4×10 -8 S/cm at low frequency, denoting that the ionic conductivity was dominant in conduction processes.

Key words:  Ba0.04Bi0.48Na0.48TiO3-SrTiO3    energy-storage    ferroelectric    microstructures
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB34  
基金资助: 国家自然科学基金(11464006)
引用本文:    
郑奎,袁昌来,周星星,王维清,许积文,周昌荣. Ba0.04Bi0.48Na0.48TiO3-SrTiO3陶瓷微结构和储能性能[J]. 《材料导报》期刊社, 2018, 32(2): 171-175.
Kui ZHENG,Changlai YUAN,Xingxing ZHOU,Weiqing WANG,Jiwen XU,Changrong ZHOU. Microstructures and Energy-storage Properties of Ba0.04Bi0.48Na0.48TiO3-SrTiO3 Ceramics. Materials Reports, 2018, 32(2): 171-175.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.002  或          https://www.mater-rep.com/CN/Y2018/V32/I2/171
图1  BBNT-xST陶瓷的XRD谱
图2  BBNT-xST陶瓷的扫描电镜图
图3  BBNT-xST陶瓷的电滞回线
图4  BBNT-xST陶瓷的储能密度和储能效率
图5  BBNT-0.34ST陶瓷的电滞回线
图6  BBNT-0.34ST陶瓷的储能密度和储能效率随电场的变化
图7  BBNT-xST陶瓷的介电常数/损耗-温度/频率曲线
图8  在10 kHz下BBNT-xST陶瓷的ln(1/ε-1/εm)和ln(T-Tm)的关系
图9  BBNT-0.34ST陶瓷的室温电阻随频率对数的变化
图10  BBNT-0.34ST陶瓷的lgI-lgV曲线
Frequency/Hz 40 102 103 104 105 106 107
Resistance/Ω 4.1×106 1.7×106 1.8×105 1.9×104 2.0×103 2.2×102 19
Ion conductivity
S/cm
2.4×10-8 5.9×10-8 5.6×10-7 5.3×10-6 4.9×10-5 4.5×10-4 5.1×10-3
表1  BBNT-0.34ST陶瓷在各个频率下的离子电导率
1 Rodel J, Jo W, Seifert K T P , et al. Perspective on the development of lead-free piezoceramics[J]. Journal of the American Ceramic Society, 2009,92(6):1153.
2 Aksel E, Jones J L . Advances in lead-free piezoelectric materials for sensors and actuators[J]. Sensors, 2010,10(3):1935.
3 Chen M, Xiao D Q, Sun Y , et al. Recent progresses of sodium bismuth titanate based lead-free piezoelectric ceramics[J]. Journal of Functional Materials, 2007,38(8):1229(in Chinese).
4 陈敏, 肖定全, 孙勇 , 等. 钛酸铋钠基无铅压电陶瓷研究近期进展[J]. 功能材料, 2007,38(8):1229.
5 Zhao J, Yan C J, Wang G M . Studies on the fabrication by citrate method and piezoelectric properties of (Na, Bi)TiO3 ceramic[J]. China Ceramics, 2010,46(4):47(in Chinese).
6 赵俊, 严春杰, 王戈明 . Na0.5Bi0.5TiO3陶瓷介电性能的实验研究[J]. 中国陶瓷, 2010,46(4):47.
7 Takenaka T, Sakat K . Dielectric, piezoelectric and pyroelectric properties of (Na1/2Bi1/2)TiO3-based ceramics[J]. Ferroelectrics, 1989,20(1):1016.
8 Ranjan R, Dviwedi A . Structure and dielectric properties of (Na0.5-Bi0.5)1-xBaxTiO3:0≤x≤0.10[J]. Solid State Communications, 2005,135(6):394.
9 Chu B J, Li G R, Jiang X P , et al. Piezoelectric property and relaxation phase transition of (Na1/2Bi1/2)TiO3-BaTiO3 system[J]. Journal of Inorganic Materials, 2000,15(5):815(in Chinese).
10 初保进, 李国荣, 江向平 , 等. ( Na1/2Bi1/2)TiO3-BaTiO3系陶瓷压电性及弛豫相变研究[J]. 无机材料学报, 2000,15(5):815.
11 Zhao M L, Wang C L, Ai S T , et al. Dielectric and piezoelectric properties of Na0.5Bi0.5TiO3-BaTiO3 ceramics[J]. Journal of Inorga-nic Materials, 2002,17(1):61(in Chinese).
12 赵明磊, 王春雷, 艾树涛 , 等. Na0.5Bi0.5TiO3-BaTiO3陶瓷的介电和压电性能研究[J]. 无机材料学报, 2002,17(1):61.
13 Takenaka T, Maruyama K . ( Na1/2Bi1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics[J]. Japanese Journal of Applied Phy-sics, 1991,30(9B):2236.
14 Jo W, Schaab S, Sapper E , et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3[J]. Journal of Applied Physics, 2011,110(7):074106-1.
15 Li Y M, Chen W, Xu Q , et al. Investigation of phase transition in Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system material[J]. Journal of Functional Materials, 2004,35(3):341(in Chinese).
16 李月明, 陈文, 徐庆 , 等. Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系铁电体的相变研究[J]. 功能材料, 2004,35(3):341.
17 Smolenskii G A, Isupov V A, Agranovskaya A I , et al. New ferroelectrics of complex composition[J]. Soviet Physics Solid State, 1961,2(11):2651.
18 Smolensky G . Ferroelectrics with diffuse phase transition[J]. Fer-roelectrics, 1984,53(1):129.
19 Chou X J, Zhai J W, Yao X . Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications[J]. Materials Chemistry & Physics, 2008,109(1):125.
20 Khemakhem L, Kabadou A, Maalej A , et al. New relaxor ceramic with composition BaTi1-x(Zn1/3Nb2/3)xO3[J]. Journal of Alloys and Compounds, 2008,452(2):451.
21 Chen C H, Amine K . Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate[J]. Solid State Ionics, 2001,144(1):51.
22 Chen K, Huang M, Shen Y , et al. Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder[J]. Solid State Ionics, 2012,235(21):8.
[1] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[2] 吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[5] 董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
[6] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[7] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[8] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[9] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[10] 张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
[11] 陈翠翠, 张倩倩, 杨勇, 舒鑫, 冉千平. 低水胶比水泥浆体静动态流变行为的经时变化[J]. 材料导报, 2024, 38(15): 23040237-5.
[12] 欧阳江秀, 鲁艳军, 卓永就, 钟慧敏, 徐锦豪. 疏水性微结构聚合物的高效注塑成形制备[J]. 材料导报, 2024, 38(15): 23020203-6.
[13] 王露, 涂拥军, 高富豪, 刘数华. 改性磷石膏对超硫酸盐水泥水化特性的影响[J]. 材料导报, 2024, 38(14): 22120115-6.
[14] 左斌, 尹洪峰, 刘云, 辛亚楼, 刘宇驰, 袁蝴蝶. 水泥回转窑过渡带用尖晶石-方镁石-铝酸钙耐火材料的制备[J]. 材料导报, 2024, 38(12): 23010150-5.
[15] 郝璐, 于德梅. 聚吡咯纳米复合材料的研究进展[J]. 材料导报, 2023, 37(9): 21110151-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed