Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23110053-16    https://doi.org/10.11896/cldb.23110053
  无机非金属及其复合材料 |
煤衍生多孔碳改性调控及其在储能领域应用
董舵1,*, 肖逸2, 邢佳颖3, 原奇鑫4
1 中国核电工程有限公司,北京 100840
2 华北电力大学能源动力与机械工程学院,北京 102206
3 清华大学环境学院,北京 100084
4 太原理工大学电气与动力工程学院,太原 030024
Modified Regulation of Coal-derived Porous Carbon for Energy Storage Applications
DONG Duo1,*, XIAO Yi2, XING Jiaying3, YUAN Qixin4
1 China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
2 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
3 School of Environment, Tsinghua University, Beijing 100084, China
4 College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 12862KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可再生能源的大规模消纳是支持世界可持续发展的原动力,但可再生能源存在间歇性,导致能量密度分散。发电与储能相结合的模式有助于可再生能源稳定输出。超级电容器、可充电电池、燃料电池和太阳能电池等可作为可再生能源的先进储能设备,然而电极材料决定储能设备的综合性能。作为优质碳源,煤炭价廉且储量丰富,以其为前躯体制备功能型煤衍生多孔碳电极材料应用于储能领域有望解决储能设备成本高及规模化生产程度低的问题。本综述重点介绍了煤衍生多孔碳材料的最新研究进展,特别关注了其合成方法、调控策略和结构优化。讨论了煤衍生多孔碳在储能领域的高效应用,并提出了进一步的研究挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董舵
肖逸
邢佳颖
原奇鑫
关键词:    功能型多孔碳  形貌特征  合成方法  调控策略  储能    
Abstract: The large-scale application of renewable energy is the driving force to support the sustainable development of the world. However, the random and intermittent working mode results in low energy density and high dispersion of renewable energy. The collaborative mode of combining power generation and energy storage is helpful to achieve safe and stable output of renewable energy. Supercapacitors, rechargeable batteries, fuel cells and solar cells can be used as advanced energy storage equipment for renewable energy. However, the electrode materials determine the comprehensive performance of the energy storage equipment. As a high-quality carbon source, coal is rich in reserve, high in carbon content and low in price. Using it as precursor to prepare functional coal-derived porous carbon electrode materials for energy storage is expected to solve the problem of high cost and low scale production of energy storage equipment. This review focuses on the latest research progress of coal-derived porous carbon materials, with special attention to synthesis methods, regulatory strategies and structural optimization. The efficient application of coal-derived porous carbon in the field of energy storage is discussed, and further research challenges are proposed.
Key words:  coal    functional porous carbon    morphological characteristics    synthesis method    regulation strategy    energy storage
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TD98  
基金资助: 国家重点研发计划(2023YFC3904102)
通讯作者:  * 董舵,中国核工业集团·中国核电工程有限公司工程师,核星计划入选者。2013年6月、2022年6月于华北电力大学获得工学学士学位和工学博士学位(硕博连读)。目前主要从事储能材料开发、核能综合利用等方面的研究工作。获发明专利授权1项,发表论文10余篇,包括Chemical Engineering Journal、Journal of Cleaner Production、Journal of Power Sources、Journal of Colloid and Interface Science、Fuel、Applied Surface Science、Journal of Environmental Management、Materials Chemistry and Physics、《科学通报》等。 dongduoyx@163.com   
引用本文:    
董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
DONG Duo, XIAO Yi, XING Jiaying, YUAN Qixin. Modified Regulation of Coal-derived Porous Carbon for Energy Storage Applications. Materials Reports, 2024, 38(24): 23110053-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110053  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23110053
1 Zhang Y S, Dong D, Xiao Y, et al. Chinese Science Bulletin, 2021, 66(34), 4466 (in Chinese).
张永生, 董舵, 肖逸, 等. 科学通报, 2021, 66(34), 4466.
2 Dong D, Zhang Y S, Shan M Y, et al. Journal of Cleaner Production, 2022, 348, 131351.
3 Tong D, Zhang Q, Liu F, et al. Environmental Science & Technology, 2018, 52, 12905.
4 Wang W J, Dong Z Y. Energy, 2021, 225, 120246.
5 Li M Q, Virguez E, Shan R, et al. Applied Energy, 2022, 306, 117996.
6 Liu J Z, Wang Q H, Song Z Q, et al. Engineering, 2021, 7, 1611.
7 Maddukuri S, Malka D, Chae Munseok S, et al. Electrochimica Acta, 2020, 354, 136771.
8 Chen Z H, An X H, Dai L M, et al. Nano Energy, 2020, 73, 104762.
9 Liu Z Y, Navik R, Tan H J, et al. The Journal of Supercritical Fluids, 2022, 188, 105672.
10 Long M Q, Tang K K, Xiao J, et al. Materials Today Sustainability, 2022, 19, 100163.
11 Peng Y, Xu J, Xu J M, et al. Advances in Colloid and Interface Science, 2022, 307, 102732.
12 Yuan S, Duan X, Liu J Q, et al. Energy Storage Materials, 2021, 42, 317.
13 Chauhan Narendra Pal S, Jadoun S, Rathore Bharatraj S, et al. Journal of Energy Storage, 2021, 43, 103218.
14 Dong D, Zhang Y S, Xiao Y, et al. Journal of Colloid and Interface Science, 2020, 580, 77.
15 Bora M, Bhattacharjya D, Saikia Binoy K. Energy & Fuels, 2021, 35, 18285.
16 Zhang Y T, Fu S Q, Cai J T, et al. Carbon Techniques, 2016, 6(35), 12 (in Chinese).
张亚婷, 付世启, 蔡江涛, 等. 炭素技术, 2016, 6(35), 12.
17 Yao Y L, Ma L L, Wang J X, et al. Chemical Industry and Engineering Progress, 2022, 41(6), 3077 (in Chinese).
姚亚丽, 马利利, 王嘉鑫, 等. 化工进展, 2022, 41(6), 3077.
18 Dong D, Zhang Y S, Wang T, et al. Materials Chemistry and Physics, 2020 252, 123381.
19 Zhang Y, Yang Q, Shao Y, et al. Journal of China Coal Society, 2023, 48(9), 3522 (in Chinese).
张永, 杨琪, 邵渊, 等. 煤炭学报, 2023, 48(9), 3522.
20 Roy E, Nagar A, Sharma A, et al. Journal of Energy Storage, 2021, 39, 102606.
21 Hasan A M M, Hasan Md. A, Reza A, et al. Materials Today Communications, 2021, 29, 102732.
22 Bo C H, Jiang W J, Wang Y G, et al. Chinese Journal of Applied Chemistry, 2021, 38(7), 767 (in Chinese).
薄纯辉, 姜维佳, 王玉高, 等. 应用化学, 2021, 38(7), 767.
23 Ye R Q, Xiang C S, Lin J, et al. Nature Communications, 2013, 4, 1.
24 Ye R Q, Peng Z W, Metzger A, et al. ACS Applied Materials & Interfaces, 2015, 7, 7041.
25 Qin F W, Li Q Q, Tang T T, et al. Fuel, 2022, 322, 124216.
26 Zhang Y T, Li K K, Ren S Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 9793.
27 Iijima S. Nature, 1991, 354, 56.
28 Wu L, Liu J, Reddy B. R, et al. Fuel Processing Technology, 2022, 229, 107171.
29 Chen H Y, Zeng S, Chen M H, et al. Carbon, 2015, 92, 271.
30 Zhou X X, Wang Y, Gong C C, et al. Chemical Engineering Journal, 2020, 402, 126189.
31 Chen H Y, Li M X, Li C P, et al. Chinese Chemical Letters, 2022, 33, 141.
32 Guo M X, Guo J X, Jia D Z, et al. Journal of Materials Chemistry A, 2015, 3, 21178.
33 Tong F L, Jia W, Pan Y L, et al. RSC Advances, 2019, 9, 6184.
34 Wang T T, He X, Gong W B, et al. Fuel, 2020, 278, 117985.
35 Zhao H Y, Wang L X, Jia D Z, et al. Journal of Materials Chemistry A, 2014, 2, 9338.
36 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2014, 306, 666.
37 Khan S, Ul-Islam M, Ahmad Mohammed W, et al. Energy & Fuels, 2022, 36, 3420.
38 He Y F, Zhuang X D, Lei C J, et al. Nano Today, 2019, 24, 103.
39 Islam T, Hasan M. Mahedi, Shah Syed S, et al. Journal of Energy Storage, 2020, 32, 101908.
40 Lei J, Wang K, Deng B W, et al. Journal of Alloys and Compounds, 2022, 914, 165359.
41 Vijapur Santosh H, Wang D, Ingram David C, et al. Materials Today Communications, 2017, 11, 147.
42 Sun W, Sun Q, Lu R F, et al. Journal of Alloys and Compounds, 2021, 889, 161678.
43 Leng C Y, Zhao Z B, Song Y Z, et al. Nano-Micro Letters, 2021, 13, 1.
44 Wei F, He X J, Ma L B, et al. Nano-Micro Letters, 2020, 12, 1.
45 Luo S Y, Li J Z, Zhang X L, et al. Journal of Analytical and Applied Pyrolysis, 2018, 135, 10.
46 Jiang Y C, He Z F, Du Y Y, et al. Journal of Colloid and Interface Science, 2021, 602, 721.
47 Guo M X, Guo J X, Tong F L, et al. RSC Advances, 2017, 7, 45363.
48 Liu C, Zeng H J, Yu K, et al. Carbon, 2022, 194, 176.
49 Li L, Wei X Y, Shao C W, et al. Fuel, 2023, 331, 125658.
50 Sun F, Wang K F, Wang L J, et al. Carbon, 2019, 155, 166.
51 Gao S S, Tang Y K, Wang L, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 3255.
52 Yang N N, Ji L, Fu H C, et al. Chinese Chemical Letters, 2022, 33, 3961.
53 Han G X, Jia J B, Liu Q R, et al. Carbon, 2022, 186, 380.
54 Ma W P, Xiao R L, Wang X X, et al. Journal of Electroanalytical Che-mistry, 2022, 917, 116417.
55 Yang X X, Zhao S, Zhang Z Z, et al. Journal of Colloid and Interface Science, 2022, 614, 298.
56 Nabais J M V, Nunes P, Carrott P J M, et al. Fuel Processing Technology, 2008, 89, 262.
57 Gao Y, Yue Q Y, Gao B Y, et al. Science of the Total Environment, 2020, 746, 141094.
58 Bergius Dr. F. Journal of the Indian Chemical Society, 1913, 32, 462.
59 Zhang W, Cheng R R, Bi H H, et al. New Carbon Materials, 2021, 36, 69.
60 Qian W X, Li X, Zhu X Q, et al. RSC Advances, 2020, 10, 8172.
61 Kumar N S, Grekov D, Pré P, et al. Renewable and Sustainable Energy Reviews, 2020, 124, 109743.
62 Liu D D, Wu Z S, Ge X Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 563.
63 Dong D, Zhang Y S, Xiao Y, et al. Fuel, 2022, 309, 122168.
64 Teng Z C, Han K H, Li J X, et al. Ultrasonics Sonochemistry, 2020, 60, 104756.
65 Bora M, Benoy Santhi M, Tamuly J, et al. Journal of Environmental Chemical Engineering, 2021, 9, 104986.
66 Dong D, Zhang Y S, Xiao Y, et al. Journal of Power Sources, 2021, 503, 230049.
67 Driscoll Laura L, Driscoll Elizabeth H, Dong B, et al. Energy & Environmental Science, 2023. 16, 5196.
68 He X J, Li X J, Ma H, et al. Journal of Power Sources, 2017, 340, 183.
69 He X J, Zhang H B, Zhang H, et al. Journal of Materials Chemistry A, 2014, 2, 19633.
70 Li X, Du X Y, Li Y L, et al. Journal of Materials Science, 2022, 57, 9357.
71 Li X, Tian X D, Yang T, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 5742.
72 Wang G Y, Wang X H, Sun J F, et al. Rare Metals, 2022, 41, 3706.
73 Zhang F H, Zhou T Y, Liu Y J, et al. Scientific Reports, 2015, 5, 11152.
74 Wu L, Cai Y M, Wang S Z, et al. International Journal of Hydrogen Energy, 2021, 46, 2432.
75 Dou S, Tao L, Wang R L, et al. Advanced Materials, 2018, 30, 1705850.
76 Rooze J, Rebrov E V, Schouten J C, et al. Ultrasonics Sonochemistry, 2013, 20, 1.
77 Leng C Y, Sun K, Li J H, et al. Journal of Alloys and Compounds, 2017, 714, 443.
78 Dong D, Zhang Y S, Xiao Y, et al. Applied Surface Science, 2020, 529, 147074.
79 Lyu H H, Gao B, He F, et al. ACS Sustainable Chemistry & Engineering, 2017, 5, 9568.
80 Munoz-Batista M J, Rodriguez-Padron D, Puente-Santiago A R, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 9530.
81 Dong D, Xiao Y, Xing J Y. Journal of Cleaner Production, 2023, 428, 139474.
82 Song X Y, Jiang R Y, Zhang L. Applied Surface Science, 2022, 583, 152549.
83 Jiang Y C, He Z F, Cui X, et al. ACS Applied Energy Materials, 2022, 5, 15199.
84 Yin Y F, Liang D C, Liu D Q, et al. RSC Advances, 2022, 12, 3062.
85 Gan X M, Yuan R L, Zhu J Y, et al. Carbon, 2023, 201, 381.
86 Lv S P, Wu X Y, Lv Y, et al. Energy & Fuels, 2023, 37, 12427.
87 Zhang Y T, Zhang K B, Jia K L, et al. Fuel, 2019, 241, 646.
88 Xing B L, Zeng H H, Huang G X, et al. Journal of Alloys and Compounds, 2019, 779, 202.
89 Gao X M, Shen Z M, Chang G B, et al. Diamond & Related Materials, 2022, 130, 109481.
90 Park Gi D, Jung Dae S, Lee J K, et al. Chemical Engineering Journal, 2019, 373, 382.
91 Lu Z J, Yao S D, Dong Y Z, et al. Journal of Energy Chemistry, 2021, 56, 87.
92 Zhang H J, Cai C L, Geng J, et al. Journal of Electroanalytical Chemistry, 2020, 871, 114231.
93 Yang J Y, Zhou X F, Yue F, et al. Journal of Solid State Electrochemistry, 2018, 22, 2553.
94 Wang C L, Meng F N, Wang T H, et al. Carbon, 2014, 67, 465.
95 Dong D, Xiao Y. Chemical Engineering Journal, 2023, 470, 144441.
96 Pohlmann S, Lobato B, Centeno Teresa A, et al. Physical Chemistry Chemical Physics, 2013, 15, 17287.
97 Bora M, Tamuly J, Benoy Santhi M, et al. Fuel, 2022, 329, 125385.
98 Tian X D, Chen Z C, Hou J, et al. Journal of Cleaner Production, 2022, 363, 132524.
99 Wang Y S, Yang J, Liu S Y, et al. Carbon, 2023, 201, 624.
100 Luo L, Lan Y L, Zhang Q Q, et al. Journal of Energy Storage, 2022, 55, 105839.
101 Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R. Ceramics International, 2021, 47, 22269.
102 Yan S X, Wang Q, Luo S H, et al. Journal of Power Sources, 2022, 461, 228151.
103 Wang R, Lee J M, Rish Salman K, et al. Fuel Processing Technology, 2022, 238, 107498.
104 Sun F, Wu D Y, Gao J H, et al. Journal of Power Sources, 2020, 477, 228759.
105 Feng B, Bhatia Suresh K, Barry John C. Carbon, 2002, 40, 481.
106 Wang L J, Sun F, Gao J H, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 588.
107 Wang H, Sun F, Qu Z B, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 18554.
108 Xiao N, Zhang X Y, Liu C, et al. Carbon, 2019, 147, 574.
109 Ju Myung J, Jeon I Y, Lim K, et al. Energy & Environmental Science, 2014, 7, 1044.
110 Ren R, Zhou X H, Cao C X, et al. Synthetic Materials Aging and Application, 2022, 51(5), 130 (in Chinese).
任蕊, 周晓慧, 曹晨茜, 等. 合成材料老化与应用, 2022, 51(5), 130.
111 Zhang S, Zhu J Y, Qing Y, et al. Advanced Functional Materials, 2018, 28, 1805898.
112 Gao Y F, Zhang Y M, Huang H L, et al. Journal of Electroanalytical Chemistry, 2022, 921, 116678.
113 Liu B L, Wang X L, Chen Y Y, et al. Journal of Energy Storage, 2023, 68, 107826.
114 Li X, Li Y L, Tian X D, et al. Journal of Alloys and Compounds, 2022, 903, 163919.
115 Liu H C, Shi W H, Song H, et al. ACS Applied Energy Materials, 2022, 6, 222.
116 Yang Y K, Zuo P P, Qu S J. Fuel, 2022, 311, 122514.
117 Yang Z H, Cao J P, Zhuang Q Q, et al. Fuel Processing Technology, 2023, 243, 107665.
118 Liu H W, Wang Y Z, Lv L, et al. Energy, 2023, 269, 126707.
119 Benoy S M, Bhattacharjya D, Bora M, et al. ACS Applied Electronic Materials, 2022, 4, 6322.
120 Han G X, Jia J B, Yao Y H, et al. Journal of Energy Storage, 2023, 68, 107612.
121 Liao Y Y, Zhou F, Zhang Y X, et al. Energy Storage Science and Technology, 2024, 13(1), 130(in Chinese).
廖雅贇, 周峰, 张颖曦, 等. 储能科学与技术, 2024, 13(1), 130.
122 Wang K F, Sun F, Wang H, et al. Advanced Functional Materials, 2022, 32, 2203725.
123 Wang R, Rish S K, Wang J L, et al. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105489.
124 Prakash S, Kumar R, Gupta A, et al. Materials Chemistry and Physics, 2022, 281, 125836.
125 Yin R L, Wang K, Han B B, et al. Coatings, 2021, 11, 948.
126 Li D P, Ren X H, Ai Q, et al. Advanced Energy Materials, 2018, 8, 1802386.
127 Wang Y W, Xiao N, Wang Z Y, et al. Carbon, 2018, 135, 187.
128 Han L, Zhu X, Yang F, et al. Powder Technology, 2021, 382, 40.
129 Sun F, Wang H, Qu Z B, et al. Advanced Energy Materials, 2021, 11, 2002981.
130 Jin C X, Xu G J, Liu L K, et al. Materials Reports, 2017,31(11), 10 (in Chinese).
金晨鑫, 徐国军, 刘烈凯, 等. 材料导报, 2017, 31(11), 10.
131 Shi J C, An Y L, Yan H L, et al. Liaoning Chemical Industry, 2023, 52(11), 1565 (in Chinese).
史锦程, 安玉良, 闫杭亮, 等. 辽宁化工, 2023, 52(11), 1565.
132 Xing B L, Zhang C T, Liu Q R, et al. Journal of Alloys and Compounds, 2019, 795, 91.
133 Xing B L, Zhang C T, Cao Y J, et al. Fuel Processing Technology, 2018, 172, 162.
134 Wei S W, Deng X Y, Li W, et al. Chemical Engineering Journal, 2023, 455, 140540.
135 Shen H T, Zhao H Q, Kang M M, et al. ChemElectroChem, 2019, 6, 4541.
136 Zhuang Z H, Cui Y L, Zhu H G, et al. Journal of The Electrochemical Society, 2018, 165, A2225.
137 Ma X Q, Xiao N, Xiao J, et al. Carbon, 2021, 179, 33.
138 Guo W J, Geng C, Sun Z F, et al. Journal of Colloid and Interface Science, 2022, 623, 1075.
139 Liu G Y, Zhang Y T, Zhou A N, et al. Energy & Fuels, 2021, 35, 6835.
140 Ali A, Bashir Farrukh S, Raza R, et al. International Journal of Hydrogen Energy, 2018, 43, 12900.
141 Xie H P, Zhai S, Chen B, et al. Applied Energy, 2020, 260, 114197.
142 Kuang H H, Cheng Y, Cui C Q, et al. Journal of Nanoscience and Nanotechnology, 2020, 20, 2736.
143 Chen X X, Wang J, Huang X N, et al. Catalysis Science & Technology, 2018, 8, 1104.
144 Luo M S, Shao C K, Song H Q, et al. Battery Bimonthly, 2023, 53(3), 328 (in Chinese).
罗明生, 邵长科, 宋焕巧, 等. 电池, 2023, 53(3), 328.
145 Dai L M, Xue Y H, Qu L T, et al. Chemical Reviews, 2015, 115, 4823.
146 Negro E, Videla Alessandro H. A. M, Baglio V, et al. Applied Catalysis B: Environmental, 2015, 166-167, 75.
147 Li Y B, Zhang H M, Wang Y, et al. Energy & Environmental Science, 2014, 7, 3720.
148 Du R, Zhang N, Zhu J H, et al. Small, 2015, 11, 3903.
149 Choi Chang H, Lee Seung Y, Park Sung H, et al. Applied Catalysis B: Environmental, 2011, 103, 362.
150 Chao S J, Geng M J. International Journal of Hydrogen Energy, 2016, 41, 12995.
151 Shamsunnahar Shammi M, Nagai M. Fuel, 2014, 126, 134.
152 Jiao Y, Zhao J H, An W T, et al. Journal of Power Sources, 2015, 288, 106.
153 Jiao Y, Tian W J, Chen H L, et al. Applied Energy, 2015, 141, 200.
154 Qi J W, Jin B L, Liu W Q, et al. Fuel, 2021, 285, 119163.
155 Dong F, Liu C, Wu M J, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 8587.
156 Liu H M, Cheng J X, Lu Z J, et al. Electrochimica Acta, 2019, 312, 22.
157 Geng J, Zhang H J, Yao S W, et al. RSC Advances, 2019, 9, 24770.
158 Jing H Y, Shi Y T, Qiu W W, et al. Journal of Power Sources, 2019, 414, 495.
159 Meng F N, Gao L G, Yan Y L, et al. Carbon, 2019, 145, 290.
160 Jing H Y, Shi Y T, Song X D, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 10484.
161 Mao W, Wei L G, Zhao L S, et al. Journal of Applied Electrochemistry, 2023, 53, 833.
162 Hu Q X, Yang X Y, Qi Y, et al. Journal of Energy Chemistry, 2023, 79, 242.
[1] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[2] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[3] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[6] 谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
[7] 张铎, 孙伟, 郭曦蔓, 岑孝鑫, 代爱萍. 煤制油气化灰渣防灭火凝胶的制备及性能[J]. 材料导报, 2024, 38(3): 22040127-7.
[8] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[9] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[10] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[11] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[12] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[13] 张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
[14] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[15] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed