Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22100005-7    https://doi.org/10.11896/cldb.22100005
  无机非金属及其复合材料 |
化学外加剂对粉煤灰湿法细化活化的影响
谭洪波1,*, 孔祥辉1, 贺行洋2, 李懋高1, 苏英2, 蹇守卫1, 杨进2
1 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
2 湖北工业大学土木建筑与环境学院,武汉 430064
Effect of Chemical Additives on Wet Grinding and Activation of Fly Ash
TAN Hongbo1,*, KONG Xianghui1, HE Xingyang2, LI Maogao1, SU Ying2, JIAN Shouwei1, YANG Jin2
1 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2 School of Civil Engineering and Environmental Sciences, Hubei University of Technology, Wuhan 430064, China
下载:  全 文 ( PDF ) ( 35096KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将粉煤灰(FA)作为矿物掺合料使用,是降低胶凝材料碳排放的重要手段之一,但其早期活性低是学者们普遍关注的问题。本研究提出在湿磨过程中引入化学功能组分来提升FA细化活化效率的技术思路;通过激光粒度仪(PSD)、pH仪、全谱直读等离子体发射光谱仪(ICP)、XRD、SEM和TG-DTG等测试手段评价了FA的物化性能及活性指数,揭示了液相研磨机械力和化学溶蚀协同作用机理。结果表明:引入TIPA、TEA、NaOH、Na2SO4及电石渣(CS)化学功能组分优化了湿磨的液相环境介质,可显著提升湿磨效率;当FA的中值粒径降低至2 μm时,TIPA+CS作用效果最为显著,研磨时间由原来的120 min缩短至40 min,缩短67%。从活性指数的角度来看,1 d龄期时,Na2SO4作用效果最为显著,湿磨FA的活性指数达到60.1%;3 d、7 d、28 d 龄期时,TIPA+CS作用效果较好,湿磨FA的活性指数分别可达到81.3%、89.1%、97%。在液相研磨机械力作用过程中,液相环境介质可溶蚀粉煤灰表面,促进表面[AlO4]和[SiO4]的解聚,加速离子溶出,形成钙矾石、C-S-H凝胶等水化产物,显著提升FA的湿磨细化活化效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭洪波
孔祥辉
贺行洋
李懋高
苏英
蹇守卫
杨进
关键词:  粉煤灰  湿法研磨  液相环境  掺合料  活性指数    
Abstract: Fly ash (FA), used as mineral admixture, is one of the important means to reduce carbon emission of cementitious materials, but its low early activity is a common concern. In this study, chemical functional components were introduced in wet grinding process to improve the efficiency of FA refinement and activation. The physicochemical property and activity index were evaluated by PSD, pH, ICP, XRD, SEM and TG-DTG, and the synergistic mechanism of liquid lapping mechanical force and chemical dissolution was revealed. The results show that the introduction of TIPA, TEA, NaOH, Na2SO4 and carbide slag (CS) chemical functional components and optimization of liquid environment medium could significantly improve the wet grinding efficiency. When the median particle size of FA was reduced to 2 μm, TIPA+CS had the most significant effect; the grinding time was reduced from 120 min to 40 min, with a decrease by 67%. At 1 day age, Na2SO4 showed the most significant effect, and the activity index of FA reached 60.1%; at 3 d, 7 d and 28 d, TIPA+CS had a good effect, and the activity index reached 81.3%, 89.1% and 97%, respectively. In the process of wet grinding process, liquid environment medium could corrode the surface of fly ash, promote the depolymerization of [AlO4] and [SiO4] on the surface, accelerate ion dissolution, form hydration products such as ettringite and C-S-H gel, and significantly improve the efficiency of refinement and activation.
Key words:  fly ash    wet grinding    the liquid phase environment    admixture    activity index
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 湖北省重点研发计划项目(2021BAA060)
通讯作者:  *谭洪波,2009年在武汉理工大学获得工学博士学位,现任武汉理工大学硅酸盐建筑材料国家重点实验室研究员,主要从事绿色低碳建筑材料及固废资源化利用相关领域的研究。目前在国际知名期刊上发表SCI论文100余篇,获得国家发明授权专利50余项。 thbwhut@whut.edu.cn   
引用本文:    
谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
TAN Hongbo, KONG Xianghui, HE Xingyang, LI Maogao, SU Ying, JIAN Shouwei, YANG Jin. Effect of Chemical Additives on Wet Grinding and Activation of Fly Ash. Materials Reports, 2024, 38(5): 22100005-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100005  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22100005
1 Luo F. Cement, 2022(1), 41(in Chinese).
罗帆. 水泥, 2022(1), 41.
2 Feng S X, Liu X T, Yang Y, et al. Guangdong Building Material, 2022, 38(1), 31(in Chinese).
丰曙霞, 刘晓彤, 杨阳, 等. 广东建材, 2022, 38(1), 31.
3 Wang P W. Low Carbon World, 2021, 11(11), 27 (in Chinese).
王沛祎. 低碳世界, 2021, 11(11), 27.
4 Li X. Shanxi Architecture, 2022, 48(2), 6 (in Chinese).
李溪. 山西建筑, 2022, 48(2), 6.
5 Hua C F, Wang W, Han G Y. Brick-Tile, 2022(3), 15 (in Chinese).
花春峰, 王巍, 韩桂英. 砖瓦, 2022(3), 15.
6 Su Y, Liu Y X, He X Y, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(1), 265 (in Chinese).
苏英, 刘雨轩, 贺行洋, 等. 硅酸盐通报, 2019, 38(1), 265.
7 Zhou B C, Hu T. Environmental Engineering, 2019, 37(S1), 306 (in Chinese).
周保成, 胡途. 环境工程, 2019, 37(S1), 306.
8 Luo X. Shandong Chemical Industry, 2022, 51(1), 24 (in Chinese).
罗翔. 山东化工, 2022, 51(1), 24.
9 Yang Y L, Liao H Q, Duan S Y, et al. China Powder Science and Technology, 2022, 28(1), 52 (in Chinese).
杨烨霖, 廖洪强, 段思宇, 等. 中国粉体技术, 2022, 28(1), 52.
10 Tan H B, Nie K J, He X Y, et al. Construction and Building Materials, 2019, 206, 248.
11 Tan H B, Deng X F, He X Y, et al. Cement and Concrete Composites, 2019, 97, 387.
12 Tan H B, Li M G, He X Y, et al. Construction and Building Materials, DOI:10. 1016/j. conbuildmat. 2020. 120465.
13 Wang Y B, Li J W, He X Y, et al. Construction and Building Materials, DOI:10. 1016/j. conbuildmat. 2020. 118593.
14 Li G Y, Tan H B, Zhang J J, et al. Construction and Building Materials, DOI:10. 1016/j. conbuildmat. 2021. 123378.
15 Zhang J J, Tan H B, He X Y, et al. Journal of Cleaner Production, DOI:10. 1016/j. jclepro. 2020. 124632.
16 Liu X H, Ma B G, Tan H B, et al. Waste Manag, 2020, 113, 456.
17 Shi C J, Day R L. Cement and Concrete Research, 1995, 25(1), 15.
18 Lan M Z, Hou W F, Wang Y L. Cement, 2015(8), 95 (in Chinese).
兰明章, 侯伟芳, 王亚丽. 混凝土, 2015(8), 95.
19 Wang Y F, Tan H B, Gu X Y, et al. Journal of Building Engineering, DOI:10. 1016/j. jobe. 2021. 103401.
20 Yang J, Su Y, He X Y, et al. Fuel Processing Technology, 2018, 181, 75.
21 Li D X, Chen Y M, Shen J L. Journal of the Chinese Ceramic Society, 2000(6), 523 (in Chinese).
李东旭, 陈益民, 沈锦林. 硅酸盐学报, 2000(6), 523.
22 Lin X Q, Wang D M, Zhang T, et al. Fly Ash Comprehensive Utilization, 2013(1), 34(in Chinese).
蔺喜强, 王栋民, 张涛, 等. 粉煤灰综合利用, 2013(1), 34.
23 Ma B G, Xu Y H, Dong R Z. Journal of Building Materials, 2006(1), 6 (in Chinese).
马保国, 许永和, 董荣珍. 建筑材料学报, 2006(1), 6.
24 Fraay A L A, Bijen J M, De-Haan Y M. Cement Concrete Research, 1989, 19(2), 235.
25 Zhang C X, Jiang Y B, Huang S. Cement Guide for New Epoch, 2002(2), 21 (in Chinese).
张成祥, 蒋永波, 黄曙. 新世纪水泥导报, 2002(2), 21.
26 Zhang C X, Jiang Y B, Huang S. Cement Guide for New Epoch, 2002(1), 10 (in Chinese).
张成祥, 蒋永波, 黄曙. 新世纪水泥导报, 2002(1), 10.
[1] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[2] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[3] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[4] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[5] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[6] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[7] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[8] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[9] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[10] 童国庆, 张吾渝, 高义婷, 唐雄宇. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 20100278-6.
[11] 同帜, 李岩, 闫笑, 董琪, 邹愈, 纪昊江. 造孔剂羧甲基纤维素对粉煤灰基陶瓷膜支撑体性能的影响及其覆膜研究[J]. 材料导报, 2022, 36(24): 20120080-6.
[12] 王雪, 王恒, 王强. 我国锂渣资源化利用研究进展[J]. 材料导报, 2022, 36(24): 22040195-11.
[13] 王鹏刚, 付华, 郭腾飞, 田砾, 赵铁军. 蒸汽养护混凝土变形行为及开裂风险评估[J]. 材料导报, 2022, 36(24): 20120185-8.
[14] 朋许杰, 李建军, 曹瑞昌, 戎鑫, 李梦, 刘银. 磁性壳聚糖吸附剂的季铵盐改性及磷吸附性能[J]. 材料导报, 2022, 36(21): 21060259-7.
[15] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed