Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20120065-7    https://doi.org/10.11896/cldb.20120065
  无机非金属及其复合材料 |
双掺矿物添加剂对水泥基材料自修复性能的影响
王凯1, 陈繁育2, 常洪雷3, 左志武1, 刘健3
1 山东高速集团有限公司,济南 250002
2 山东大学土建与水利学院,济南 250061
3 山东大学齐鲁交通学院,济南 250002
Effect of Double Mineral Additives on Self-healing Performance of Cement Based Materials
WANG Kai1, CHEN Fanyu2, CHANG Honglei3, ZUO Zhiwu1, LIU Jian3
1 Shandong Expressway Group Co., Ltd, Jinan 250002, China
2 School of Civil Engineering, Shandong University, Jinan 250061, China
3 School of Qilu Transportation, Shandong University, Jinan 250002, China
下载:  全 文 ( PDF ) ( 5582KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究双掺矿物添加剂对水泥基材料早期自修复性能的影响,利用硅灰、偏高岭土、生石灰、膨胀剂及Na2CO3通过两两复掺的形式对10%(质量分数)的水泥进行置换,通过裂缝观测和透水试验评定了九种双掺配比的试件分别在浸水养护和标准养护环境下的修复规律,并测定了浸水养护前后的抗压强度。结果表明,随着修复时间的延长,双掺试件的裂缝宽度及透水系数均逐渐减小,且在浸水环境下的修复效果优于标准养护环境下的修复效果;生石灰分别与硅灰、偏高岭土复掺的试件的裂缝修复效果较好,效果最好的是生石灰与偏高岭土复掺的试件,其在浸水环境下的28 d裂缝修复率可达100%,透水性恢复率可达80%;浸水修复28 d后试件的抗压强度可提升10%~30%,达到无损伤试件强度的60%~80%,且强度提升效果与裂缝宽度及透水系数的修复程度相关性较高;含生石灰的双掺试件的主要修复产物为碳酸钙、氢氧化钙和含Mg化合物,其与硅灰、偏高岭土复掺后的修复产物还有水化硅酸钙、水化硅铝酸钙和一些铝相化合物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王凯
陈繁育
常洪雷
左志武
刘健
关键词:  自修复  矿物掺合料  水泥基材料  双掺    
Abstract: In order to study the effect of double mineral additives on the early self-healing performance of cement-based materials, silica fume, meta-kaolin, quicklime, expansive agent and Na2CO3 were used to replace 10% (mass percent) cement by double mixing. The repair laws of nine kinds of specimens with double mixing ratio under immersion curing and standard curing environment were evaluated by crack observation and water permeability test, and the compressive strength test was conducted before and after water curing. The results show that with the extension of the repair time, the crack width and water permeability coefficient of the double-mixed specimens gradually decrease, and the repair effect under the water immersion environment is better than that under the standard curing environment; the crack repair rate of the specimens mixed with quicklime and silica fume or metakaolin respectively is better. The best effect is the specimens mixed with quicklime and metakaolin, and its 28 d crack repair rate can reach 100% and the water permeability recovery rate can reach 80% under water immersion environment in 28 d.The compressive strength of the specimens can be increased by 10%—30%, reaching 60%—80% of the strength of the undamaged specimens, and the strength improvement effect has a high correlation with the repair degree of crack width and permeability coefficient. The main repair products of the double-mixed specimens containing quicklime are calcium carbonate, calcium hydroxide and magnesium compounds. The repair products mixed with silica fume and metakaolin include calcium silicate hydrate, calcium aluminosilicate hydrate and some aluminum phase compounds.
Key words:  self-healing    mineral admixture    cement-based material    double mixing
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TU52  
基金资助: 山东省自然科学基金青年基金(ZR2019QEE017); 国家自然科学基金青年基金(51908327); 山东大学基本科研业务费专项资金(31560078614117)
通讯作者:  lj75@sdu.edu.cn   
作者简介:  王凯,2017年12月毕业于山东大学,获得防灾减灾工程及防护工程博士学位。山东高速集团有限公司业务经理、工程师,主要从事交通工程地质灾害致灾机理与防治等方面的研究。发表学术论文10余篇,其中SCI及EI收录6篇,授权专利10余项。
刘健,2005年毕业于天津大学,获得水利水电工程博士学位。山东大学教授,博士研究生导师。主要从事交通基础设施智能检测,岩土结构计算分析、安全评估与监控等方面的研究。发表学术论文30余篇,其中SCI及EI收录20余篇,以第一完成人授权专利12项。
引用本文:    
王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
WANG Kai, CHEN Fanyu, CHANG Honglei, ZUO Zhiwu, LIU Jian. Effect of Double Mineral Additives on Self-healing Performance of Cement Based Materials. Materials Reports, 2022, 36(5): 20120065-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120065  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20120065
1 Wu M, Johannesson B, Geiker M. Construction and Building Materials, 2012, 28(1), 571.
2 Tittelboom van K. Self-healing concrete through incorporation of encapsulated bacteria- or polymer-based healing agents. Ph.D. Thesis, Ghent University, Ghent, 2012.
3 Shi H S, Fang Z F. Journal of the Chinese Ceramic Society, 2004(1), 95(in Chinese).
施惠生, 方泽锋. 硅酸盐学报, 2004(1), 95.
4 Liu H B, Sheng X H, Tang W Q, et al. Concrete,2014(10),52(in Chinese).
刘红彬, 盛星汉, 唐伟奇,等. 混凝土, 2014(10), 52.
5 Wang X, Fang C, Li D,et al. Cement and Concrete Composites, 2018, 92, 216.
6 Zhou Z H, Li Z Q, Xu D Y,et al. Advanced Materials Research, 2001,306, 1020.
7 Huang H L, Ye G, Damidot D. Cement and Concrete Research, 2014, 60, 68.
8 Chen C L, Tu Q M, Ling Y Z. New Building Materials, 2008(4), 43(in Chinese).
陈昌礼, 屠庆模, 凌友志. 新型建筑材料, 2008(4), 43.
9 Rashad A M. Construction and Building Materials, 2013, 41, 303.
10 Wang X, Fang C, Li D, et al. Cement and Concrete Composites, 2018, 92, 216.
11 Chang H L, Chen F Y, Qu M Y, et al. Journal of Southeast University (Natural Science Edition), 2020, 50(6),27(in Chinese).
常洪雷, 陈繁育, 曲明月, 等. 东南大学学报(自然科学版), 2020, 50(6),27.
12 Liu S R, Yang J J, Wang Z Z, et al. China Concrete and Cement Pro-ducts, 2015(6), 1(in Chinese).
刘素瑞, 杨久俊, 王战忠, 等. 混凝土与水泥制品, 2015(6), 1.
13 Wu S Y. Study on self-healing mechanism of the concrete cracks. Master's Thesis, Dalian University of Technology, China, 2019(in Chinese).
武少赟. 混凝土裂缝自愈合机理研究.硕士学位论文,大连理工大学,2019.
14 Liu H, Huang H L, Wu X T, et al. Cement and Concrete Research,2019,120, 198.
15 Jiang Z W, Li W T, Yuan Z C. Cement and Concrete Composites,2015,57, 116.
16 Hassan K E, Cabrera J G, Maliehe R S. Cement and Concrete, 2000, 22, 267.
17 Isaia G C, Astaldini A L G, Moraes R. Cement and Concrete Composites, 2003, 25, 69.
18 Yan Y D, Jin W L, Wang H L. Industrial Construction, 2011, 41(5), 6(in Chinese).
延永东, 金伟良, 王海龙. 工业建筑, 2011, 41(5), 6.
19 Sabija B. Experimental and numerical investigation of chloride ingress in cracked concrete. Ph.D. Thesis, Delft University of Technology, the Netherlands, 2014.
20 Sisomphon K, Copuroglu O, Koenders E A B. Cement and Concrete Composites, 2012, 34(4), 566.
21 De Nardi C, Cecchi A, Ferrara L, et al. Composites Part B: Enginee-ring, 2017, 124, 144.
22 Shui Z H,Wei X S, Wang D M. Modern concrete science and technology, Science Press, 2015(in Chinese).
水中和, 魏小胜, 王栋民. 现代混凝土科学技术,科学出版社,2015.
23 Purdon A O. Journal of Chemical Technology and Biotechnology, 1940, 59, 191.
24 Wang X F, Fang C, Li D W, et al. Cement and Concrete Composites,2018, 92, 216.
25 Li G Y, Huang X F, Lin J S,et al. Construction and Building Materials,2019,200, 36.
[1] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[2] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[3] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[4] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[5] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[6] 常洪雷, 曲明月, 刘伟, 陈繁育, 周鹏飞, 程梦莹, 刘健. 基于聚乙烯醇制备的自修复胶囊的性能评估[J]. 材料导报, 2021, 35(6): 6212-6218.
[7] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[8] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[9] 刘进, 呙润华, 张增起. 磷酸镁水泥性能的研究进展[J]. 材料导报, 2021, 35(23): 23068-23075.
[10] 徐晶, 唐一洪, 王先志. 微生物沉积优化与混凝土自修复条件的相关性研究[J]. 材料导报, 2021, 35(22): 22039-22044.
[11] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[12] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[13] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[14] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[15] 陈沁文, 苏依林, 李敏, 钱春香. 基于碳酸钙标记的水泥基材料裂缝自修复表征[J]. 材料导报, 2021, 35(14): 14045-14051.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed