Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22039-22044    https://doi.org/10.11896/cldb.20090182
  无机非金属及其复合材料 |
微生物沉积优化与混凝土自修复条件的相关性研究
徐晶, 唐一洪, 王先志
同济大学先进土木工程材料教育部重点实验室,上海 201804
Study on the Correlation Between the Optimum Conditions of Microbially-induced CaCO3 Precipitation and the Prerequisites for Self-healing Concrete
XU Jing, TANG Yihong, WANG Xianzhi
Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Ministry of Education, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 2246KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究旨在探索基于脲解反应的微生物诱导碳酸钙沉积的最优条件与实现自修复混凝土的先决条件之间的联系。首先针对影响微生物诱导碳酸钙沉淀过程的实验条件设计正交试验。结果表明,初始菌密度和钙离子浓度分别为影响微生物诱导碳酸钙沉淀效果的极显著因子和显著因子,且高初始菌密度(1×108 cells/mL)和相对较低的钙离子浓度(50 mmol/L)更有利于微生物碳酸钙沉积。因为自修复剂在裂缝中的溶解被认为是自修复的必需条件,所以本研究的第二部分通过溶出实验来模拟尿素和钙离子在混凝土裂缝中的溶出情况。当混凝土中加入的尿素和硝酸钙的质量比为2∶3时,裂缝中溶出的最高估计尿素浓度(345 mmol/L)和钙离子浓度(44 mmol/L)接近正交试验所得出的最优值。虽然尿素和硝酸钙的加入不会对混凝土的力学性能产生负面影响,但是由于直接掺入自修复剂的利用率较低,不建议自修复剂不采用任何负载方法而直接掺入混凝土基体中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐晶
唐一洪
王先志
关键词:  细菌  脲解  碳酸钙沉淀  优化  自修复    
Abstract: This paper aimed at correlating the optimum conditions of ureolytic type microbially-induced CaCO3 precipitation (MICP) with the prerequisites for self-healing concrete. Orthogonal experiments of a combination of factors contributing to the MICP process were firstly designed and performed. Results show that initial cell density and Ca2+ concentration were highly significant factor and significant factor respectively. Besides, high initial cell density (1×108 cells/mL) together with relatively lower Ca2+ concentration (50 mmol/L) favored microbial precipitation. The se-cond part of this study was associated with dissolution tests to simulate the dissolving behavior of urea and calcium in the concrete crack solution, since the dissolving of healing agents in crack is the prerequisite for self-healing concrete. By an addition of urea and Ca(NO3)2 with constant mass ratio of 2∶3 in concrete, the highest values of the estimated urea concentration (345 mmol/L) and Ca2+ concentration (44 mmol/L) dissolved in cracks were close to the optimum values found by orthogonal experiments. Although the addition of urea and Ca(NO3)2 would not have a negative impact on the mechanical properties of concrete, direct mixing is not recommended due to the low utilization efficiency of incorporated healing agents for self-healing concrete.
Key words:  bacteria    ureolysis    calcium carbonate    optimization    self-healing
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TU520  
基金资助: 国家重点研发计划(2019YFC1906203);硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金(SYSJJ2019-04)
通讯作者:  09105@tongji.edu.cn   
作者简介:  徐晶,2009年3月毕业于同济大学,获材料学博士学位,同年留校工作至今,主要从事先进土木工程材料研究,研究领域包括:微生物自修复混凝土,水泥基材料的纳米改性,以及钢筋混凝土的腐蚀与防护。
引用本文:    
徐晶, 唐一洪, 王先志. 微生物沉积优化与混凝土自修复条件的相关性研究[J]. 材料导报, 2021, 35(22): 22039-22044.
XU Jing, TANG Yihong, WANG Xianzhi. Study on the Correlation Between the Optimum Conditions of Microbially-induced CaCO3 Precipitation and the Prerequisites for Self-healing Concrete. Materials Reports, 2021, 35(22): 22039-22044.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090182  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22039
1 Boquet E, Boronat A, Ramos-Cormenzana A. Nature,1973,246(5434),527.
2 Dejong J T, Soga K, Kavazanjian E, et al. Geotechnique, 2013, 63(4), 287.
3 Van Tittelboom K, De Belie N, De Muynck W, et al. Cement and Concrete Research, 2010, 40(1), 157.
4 Qian C X, Ren L F, Luo M. Journal of the Chinese Ceramic Society, 2015, 43(5), 619(in Chinese).
钱春香, 任立夫, 罗勉. 硅酸盐学报, 2015, 43(5), 619.
5 Xu J. Journal of Zhejiang University(Engineering Science), 2012, 46(11), 2020(in Chinese).
徐晶. 浙江大学学报 (工学版), 2012, 46(11), 2020.
6 De Muynck W, De Belie N, Verstraete W. Ecological Engineering, 2010, 36(2), 118.
7 Liu S Y, Yu J, Liu W Q, et al. Journal of Building Materials, 2020, 30(1), 1(in Chinese).
刘士雨, 俞缙, 刘文强, 等. 建筑材料学报, 2020, 30(1), 1.
8 Wiktor V, Jonkers H M. Cement and Concrete Composites, 2011, 33(7), 763.
9 Xu J, Yao W. Cement and Concrete Research, 2014, 64(1), 1.
10 Wang J Y, Soens H, Verstraete W, et al. Cement and Concrete Research, 2014, 56(5), 139.
11 Luo M, Qian C X. Construction and Building Materials, 2016, 121(2), 659.
12 Rong H, Wei G Q, Ma G W, et al. Construction and Building Materials, 2020, 244(5), 1.
13 Zhang J G, Xu S S, Feng T, et al. Journal of Tsinghua University (Science and Technology), 2019, 59(8), 607(in Chinese).
张家广, 许顺顺, 冯涛, 等. 清华大学学报(自然科学版), 2019, 59(8), 607.
14 Qian C X, Feng J H, Su Y L. Materials Reports B:Research Papers, 2019, 33(12), 1983(in Chinese).
钱春香, 冯建航, 苏依林. 材料导报:研究篇, 2019, 33(12), 1983.
15 Tziviloglou E, Van Tittelboom K, Palin D, et al. Self-healing materials, Springer, 2016,pp.345.
16 Stocks-Fischer S, Galinat J K, Bang S S. Soil Biology and Biochemistry, 1999, 31(11), 1563.
17 Achal V, Pan X J A. Biotechnology, 2014, 173(1), 307.
18 Gorospe C M, Han S H, Kim S G, et al. Biotechnology and Bioprocess Engineering, 2013, 18(5), 903.
19 Luo S, Liu B, Zhang J L, et al. Journal of Shenzhen University(Science and Engineering), 2020, 37(1), 25(in Chinese).
罗顺, 刘冰, 张金龙, 等. 深圳大学学报(理工版), 2020, 37(1), 25.
20 Xu J, Wang X, Wang B. Applied Microbiology and Biotechnology, 2018, 102(7), 3121.
21 Douglas L A, Bremner J M. Soil Science Society of America Journal, 1970, 34(6), 859.
22 Wong L S. Journal of Cleaner Production, 2015, 93(4), 5.
23 Zheng T, Qian C. Process Biochemistry, 2020, 91(4), 271.
24 Okwadha G D O, Li J. Chemosphere, 2010, 81(9), 1143.
25 Pilehvar S, Arnhof M, Pamies R, et al. Journal of Cleaner Production, 2020, 247(2), 1.
26 Mwaluwinga S, Ayano T, Sakata K. Cement and Concrete Research, 1997, 27(5), 733.
27 Mehta P K, Monteiro P J. Concrete:structure, properties and materials, McGraw-Hill Education, New Jersey, 2013.
28 Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Geochimica et Cosmochimica Acta, 2007, 71(5), 1197.
29 Xu J, Wang X Z, Yao W. Cement & Concrete Composites, 2019, 104(11), 1.
30 Xu J, Wang B B, Zuo J Q. Cement & Concrete Composites, 2017, 81(8), 1.
[1] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[2] 贺诚, 李庆超, 周涵, 李东旭. 石膏基地面轻质保温层材料的制备及性能研究[J]. 材料导报, 2021, 35(z2): 236-240.
[3] 齐季, 谢飞, 王丹, 赵杨. 微生物与磁场作用下管线钢的腐蚀行为研究进展[J]. 材料导报, 2021, 35(7): 7169-7175.
[4] 常洪雷, 曲明月, 刘伟, 陈繁育, 周鹏飞, 程梦莹, 刘健. 基于聚乙烯醇制备的自修复胶囊的性能评估[J]. 材料导报, 2021, 35(6): 6212-6218.
[5] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[6] 韩冰源, 徐文文, 朱胜, 黄庆伟, 雷卫宁, 杭卫星, 杜伟. 面向等离子喷涂涂层质量调控的工艺优化方法研究现状[J]. 材料导报, 2021, 35(21): 21105-21112.
[7] 杨国坤, 蒋国盛, 刘天乐, 覃鑫, 余尹飞. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用[J]. 材料导报, 2021, 35(2): 2032-2038.
[8] 石峰, 邹佳朴, 吴子华, 谢华清, 王元元. 热电器件各界面优化方法研究综述[J]. 材料导报, 2021, 35(19): 19049-19054.
[9] 王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
[10] 高正源, 刘洋志, 任俊州, 安治国. 基于计算流体动力学的陶瓷膜过滤过程模拟研究进展[J]. 材料导报, 2021, 35(15): 15094-15106.
[11] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[12] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[13] 单腾, 王思捷, 殷凤仕, 乔玉林, 刘鹏飞. 激光清洗的典型应用及对基体表面完整性影响的研究进展[J]. 材料导报, 2021, 35(11): 11163-11172.
[14] 王芮晗, 赵若虹, 邹宛晏, 王敏, 周博, 齐胜利, 刘刚, 武德珍. 耐原子氧聚酰亚胺材料的研究进展[J]. 材料导报, 2021, 35(11): 11187-11195.
[15] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed