Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11057-11065    https://doi.org/10.11896/cldb.20010086
  无机非金属及其复合材料 |
富锂锰基正极材料结构优化及晶面调控研究进展
周建峰1,2, 翟鑫华2,3, 张盼盼2,3, 何亚鹏2,3, 董劲1,2,3, 黄惠1,2,3,*, 郭忠诚1,2,3
1 昆明理工恒达科技股份有限公司,昆明 650106;
2 云南省冶金电极材料工程技术研究中心,昆明 650106;
3 昆明理工大学冶金与能源工程学院,昆明 650093
Research Progress on Structural Optimization and Crystal Surface Control of Li-rich Manganese-based Cathode Materials
ZHOU Jianfeng1,2, ZHAI Xinhua2,3, ZHANG Panpan2,3, HE Yapeng2,3, Dong Jin1,2,3, HUANG Hui1,2,3,*, GUO Zhongcheng1,2,3
1 Kunming Hendera Science and Technology Co., Ltd., Kunming 650106, China;
2 Research Center of Metallurgical Electrode Materials Engineering Technology, Yunnan Province, Kunming 650106, China;
3 College of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 7437KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 富锂锰基正极材料(Li-rich manganese cathode material, LMCM)具有高放电比容量(250 mAh·g-1@0.1C)、高电压、制作成本低和环保等优点,被视为下一代动力锂电池正极材料的理想之选,是锂电池能量密度突破400 Wh/kg的关键电极材料。但LMCM存在首次不可逆容量高和库伦效率差、倍率性能差和电压衰减等问题,在一定程度上制约了此类正极材料的大规模使用。
为了解决LMCM存在的问题,相关学者做了大量的研究工作。一方面,针对LMCM在循环过程中的容量特性及结构演变规律进行了研究,为LMCM优化改性提供理论基础;另一方面,通过表面包覆、离子掺杂、表面酸处理等方法进行改性以提升LMCM的电化学性能,虽然取得了一定的成果,但是并不能完全满足使用需求。因此,近年来学者们开始在材料结构优化及活性晶面调控方面不断尝试,在保持LMCM优点的同时,进一步提高材料的倍率性能和循环寿命,降低首次不可逆容量损失,抑制循环过程的电压衰减。
材料晶体结构优化的主要研究方向有构筑缺陷体系、层状-尖晶石异质结构、微纳结构、多孔结构等,优化后的结构能够有效缩短充放电过程中Li+的扩散路径,提升材料的结构强度,减少过渡金属离子的迁移和相变的发生,增强电解液渗透性,有效提高材料的结构及电化学稳定性;而晶面调控通过构筑具有α-NaFeO2结构且晶向与锂层平行的晶面作为Li+脱嵌的电化学活性面,为Li+扩散提供畅通的路径,既能缩短Li+的扩散距离,又能提高Li+脱嵌的速率,从而提升材料大电流充放电能力。
本文归纳了LMCM的研究进展,分别对材料的容量特性及结构演变、结构优化、电化学活性晶面调控等方面进行了介绍,分析了LMCM研究的成果和面临的问题,并对后续研究方向进行展望,以期为LMCM的设计和可控制备提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周建峰
翟鑫华
张盼盼
何亚鹏
董劲
黄惠
郭忠诚
关键词:  富锂锰基正极材料  结构优化  晶面调控  电化学性能    
Abstract: Li-rich manganese cathode material (LMCM) is regarded as the next generation of cathode materials for lithium battery due to its advantages such as high discharge specific capacity (250 mAh·g-1@0.1C), high voltage, low manufacturing cost and environmental protection, and it is a key electrode material for lithium batteries with energy density exceeding 400 Wh/kg.
In order to solve the problems existing in LMCM, researchers have done a lot of research work. On the one hand, the capacity characteristics and structural evolution of LMCM during the cycle are studied to provide a theoretical basis for LMCM optimization modification. On the other hand, modification method such as surface coating, ion doping, surface acid treatment and other methods has been carried out to improve the electrochemical performance of LMCM, although achieved certain results, but it can not fully meet the needs of use. Therefore, in recent years, researchers have begun to continue to try to optimize the structure of the material and adjust the active crystal plane. While maintaining the advantages of LMCM, it further improves the rate capability and cycle life of the material, reduces the first irreversible capacity loss, and suppresses the voltage decay during the cycle.
The main research directions for the optimization of the crystal structure of materials are the construction of defect systems, layered-spinel he-terostructures, micro-nano structures, porous structures, etc. The optimized structure can effectively shorten the Li+ diffusion path during the charge and discharge process and improve the structure strength of the material, reduce the migration of transition metal ions and the phase transition, enhance the permeability of the electrolyte, effectively improve the structure and electrochemical stability of the material; and the crystal plane control by building a structure with α-NaFeO2 and the crystal direction parallel to the lithium layer as the electrochemical active surface for Li+ deintercalation, the crystal plane provides a clear path for Li+ diffusion, which can not only shorten the Li+ diffusion distance, but also increase the rate of Li+ deintercalation, thereby enhancing the material’s ability to charge and discharge at high currents.
In this paper, the research progress of LMCM is summarized, and the capacity characteristics, structural evolution, structural optimization, electrochemical active crystal plane control of materials are introduced respectively. The research results and problems of LMCM are analyzed, and the future research direction is prospected, in order to provide reference for the design and controllable preparation of LMCM.
Key words:  Li-rich manganese cathode material    structural optimization    crystal plane control    electrochemical performance
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TM912  
通讯作者:  *huihuanghan@kmust.edu.cn   
作者简介:  周建峰,2011年3月毕业于昆明理工大学冶金与能源工程学院冶金物理化学专业,获硕士学位。现任昆明理工恒达科技股份有限公司研发工程师,目前主要研究领域为电极材料及新型储能材料。黄惠,教授,博士研究生导师,现任昆明理工恒达科技股份有限公司技术总监、云南省冶金电极材料工程技术研究中心副主任。2000年毕业于四川大学化学学院高分子专业,获学士学位;2006年7月毕业于云南大学材料科学学院无机材料专业,获硕士学位;2010年3月毕业于昆明理工大学冶金与能源工程学院冶金物理化学专业,获博士学位; 2014—2015年在美国弗罗里达大学作访问学者。现主要从事导电高分子新型节能阳极材料、特种功能粉体材料、冶金电化学及湿法冶金新材料等领域的研究开发及成果转化应用。目前,申请授权国家发明专利21件,出版学术专著3部,发表学术论文48篇,其中SCI、EI等收录36篇。获中国有色金属工业科学技术奖一等奖1项,云南省自然科学奖三等奖1项,云南省科学技术发明奖三等奖1项。云岭产业技术领军人才、云南省中青年技术创新人才及昆明市中青年学术与技术带头人等称号。
引用本文:    
周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
ZHOU Jianfeng, ZHAI Xinhua, ZHANG Panpan, HE Yapeng, Dong Jin, HUANG Hui, GUO Zhongcheng. Research Progress on Structural Optimization and Crystal Surface Control of Li-rich Manganese-based Cathode Materials. Materials Reports, 2021, 35(11): 11057-11065.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010086  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11057
1 Li B, Zhao W, Yang Z, et al. Journal of Power Sources,2020,466,228339.
2 Wang C, Song Z, Wan H, et al. Chemical Engineering Journal,2020,400,125955.
3 Wang S, Xu J, Wang W, et al. Nature,2018,555(7694),83.
4 Dao V D, Vu N H, Choi H S. Journal of Power Sources,2020,448,227388.
5 Liu H, Feng Y, Shao J, et al. Nano Energy,2020,70,104499.
6 Li H, Koh C S L, Lee Y H, et al. Nano Energy,2020,73,104723.
7 Li Z B, Li H Y, Fan Y J, et al. ACS Applied Materials & Interfaces,2019,11(22),20370.
8 Liu G X, Li W J, Liu W B, et al. Advanced Sustainable Systems,2018,2(12),1800081.
9 Yin Y, Wang J, Zhao S, et al. Advanced Materials Technologies,2018,3(5),1700370.
10 Tan Y H, Liu C K, Mao X, et al. Journal of Materials Engineering,2019,47(10),10(in Chinese).
谭耀红,刘呈坤,毛雪,等.材料工程,2019,47(10),10.
11 Yang L, Zhao Q, Chen K, et al. ACS applied materials & interfaces,2020,12(9),11045.
12 Wang Z L, Song J. Science,2006,312(5771),242.
13 Hu D, Yao M, Fan Y, et al. Nano Energy,2019,55,288.
14 Ramadan K S, Sameoto D, Evoy S. Smart Materials and Structures,2014,23(3),033001.
15 Mokhtari F, Latifi M, Shamshirsaz M. The Journal of the Textile Institute,2016,107(8),1037.
16 Toroń B, Szperlich P, Kozio? M. Materials,2020,13(4),902.
17 Mokhtari F, Cheng Z, Raad R, et al. Journal of Materials Chemistry A,2020,8(19),9496.
18 Mokhtari F, Spinks G M, Fay C, et al. Advanced Materials Technologies,2020,5(4),1900900.
19 Ding B Y, Gong J P. Piezoelectrics & Acoustooptics,2018,40(1),101(in Chinese).
丁本勇,巩建平.压电与声光,2018,40(1),101.
20 Li C W. Study on modifying and properties of KNN-based lead-free piezoceramics. Ph.D. Thesis, Xi'an University of Technology, China,2020(in Chinese).
李晨薇.铌酸钾钠基无铅压电陶瓷掺杂改性及性能研究.博士学位论文,西安理工大学,2020.
21 Hu Y Q. The preparation of BiFeO3-BaTiO3 ferroelectric thin films and research of multifunctional properties. Master's Thesis, Shanghai Normal University, China,2020(in Chinese).
胡钰晴.铁酸铋-钛酸钡铁电薄膜的制备与多功能特性研究.硕士学位论文,上海师范大学,2020.
22 Liu T, Zhao C, Zhang G H, et al. Materials for Mechanical Engineering,2020,44(6),82(in Chinese).
刘婷,赵程,张刚华,等.机械工程材料,2020,44(6),82.
23 Yan J, Liu M, Jeong Y G, et al. Nano Energy,2019,56,662.
24 Nunes-Pereira J, Sencadas V, Correia V, et al. Sensors & Actuators A, Physical,2013,196,55.
25 Guo W, Tan C, Shi K, et al. Nanoscale,2018,10(37),17751.
26 Ghosh S K, Mandal D. Nano Energy,2016,28,356.
27 Hoque N A, Thakur P, Biswas P, et al. Journal of Materials Chemistry A,2018,6(28),13848.
28 Karan S K, Maiti S, Agrawal A K, et al. Nano Energy,2019,59,169.
29 Almusallam A, Luo Z H, Komolafe A, et al. Nano Energy,2017,33,146.
30 Ji S H, Yun J S. Mechanical Systems and Signal Processing,2020,136,106447.
31 Bairagi S, Ali S W. Energy,2020,198,117385.
32 Ganeshkumar R, Cheah C W, Xu R, et al. Applied Physics Letters,2017,111(1),013905.
33 Fu J, Hou Y, Zheng M, et al. Polymer Composites,2019,40(S1),E570.
34 Chen X, Li X, Shao J, et al. Small,2017,13(23),1604245.
35 Chen X, Shao J, Tian H, et al. Smart Materials and Structures,2018,27(2),025018.
36 Anand A, Bhatnagar M. Materials Today Energy,2019,13,293.
37 Xu S, Hansen B J, Wang Z L. Nature Communications,2010,1(1),1.
38 Zhu G, Wang A C, Liu Y, et al. Nano Letters,2012,12(6),3086.
39 Yun B K, Park Y K, Lee M, et al. Nanoscale Research Letters,2014,9(1),4.
40 Jin C, Liu X, Liu C, et al. Materials & Design,2018,144,55.
41 Charoonsuk T, Sriphan S, Nawanil C, et al. Journal of Materials Chemistry C,2019,7(27),8277.
42 Yan J, Jeong Y G. ACS Applied Materials & Interfaces,2016,8(24),15700.
43 Zhu J. Design and application of flexible piezoelectric nanogenerator. Ph.D. Thesis, North University of China, China,2018(in Chinese).
朱杰.柔性压电纳米发电机的设计构建与应用研究.博士学位论文,中北大学,2018.
44 Liao Q, Zhang Z, Zhang X, et al. Nano Research,2014,7(6),917.
45 He J, Qian S, Niu X, et al. Nano Energy,2019,64,103933.
46 Huang T, Zhang Y, He P, et al. Advanced Materials,2020,32(10),1907336.
47 Mamishev A V, Sundara R K, Yang F, et al. Proceedings of the IEEE,2004,92(5),808.
48 Chary K S, Kumar V, Prasad C D, et al. Journal of the Australian Ceramic Society,2020,56,1107.
49 Jurado U T, Pu S H, White N M. Nano Energy,2020,72,104701.
[1] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[2] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[3] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[4] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[5] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[6] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[7] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[8] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[9] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[10] 邓安强, 罗永春, 王浩, 赵磊, 郑坤. 新型无镁YNi3.5-xAlx(x=0~0.3)储氢合金的结构和电化学性能[J]. 材料导报, 2020, 34(14): 14110-14115.
[11] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[12] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[13] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[14] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[15] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed