Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9097-9107    https://doi.org/10.11896/cldb.20050229
  无机非金属及其复合材料 |
全固态锂硫电池中界面问题的研究现状
贾政刚1, 张学习1,*, 钱明芳1, 耿林1, 熊岳平2,*
1 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
2 哈尔滨工业大学化工与化学学院,哈尔滨 150001
Interface-related Issues in the Research of All-Solid-State Lithium-Sulfur Batteries: a Review
JIA Zhenggang1, ZHANG Xuexi1,*, QIAN Mingfang1, GENG Lin1,XIONG Yueping2,*
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 9915KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于锂金属负极的理论比容量和固态电解质的安全性高,全固态锂硫电池越来越受到研究者的青睐。与液态锂硫电池相比,全固态锂硫电池最大的不同在于使用固态电解质替换了液态电解质,且固态电解质材料不可燃,因此有着更高的安全性。此外,经过优化处理后的固态电解质有着足够的机械强度,可以有效抑制锂枝晶的产生。同时在产品的制备和运输方面,全固态电池也有着更大的优势。
然而,全固态电池中存在着大量的固固界面,这些固固界面会导致在循环过程中产生界面电阻、体积畸变等一系列问题,会制约全固态锂硫电池的商业应用。因此,近年来学者们对固固界面进行了广泛的研究,不断改进制备工艺,表征界面变化过程,并对离子迁移路径进行了模拟和验证。目前,全固态锂硫电池已经有部分投入了商业应用。
全固态锂硫电池主要包括含硫正极、锂金属负极和固态电解质,而固态电解质主要分为无机固态电解质和有机固态电解质两大类。因此,对固态电解质界面的研究也可以分为两大类:一类是固态电解质内部界面,包括无机电解质与无机电解质之间的界面或者无机电解质与有机电解质之间的界面,该界面主要对离子电导率有着重要影响;另一类主要包括固态电解质与正负极之间的界面,对电池的化学稳定性、体积稳定性和离子电导率等均存在较大的影响。近年来,研究者发现通过改变混合方法、粒径、多孔基体和体积压力等能够有效改善界面。同时,随着表征技术的发展,越来越多的原位界面表征技术能够更加直观地展现界面的变化状态。
本文系统性地阐述了全固态锂硫电池的内、外界面存在的问题和研究现状,并探讨了全固态锂硫电池未来的发展趋势和研究重点,以期为制备稳定、高性能的全固态锂硫电池提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾政刚
张学习
钱明芳
耿林
熊岳平
关键词:  全固态锂硫电池  固固界面  固态电解质  电化学性能    
Abstract: Due to the high theoretical specific capacity of lithium metal anodes and the high safety of solid electrolytes, all-solid-state lithium-sulfur batte-ries (SSLSBs) are increasingly favored by researchers. Compared with liquid lithium-sulfur batteries, the biggest difference of SSLSBs is that the solid electrolyte replaces the liquid electrolyte. The solid electrolyte material is of high safty because of non-flammable of solid electrolyte. In addition, the optimized solid electrolyte exhibits sufficient mechanical strength to effectively suppress the generation of lithium dendrites. SSLSBs also have greater advantages in terms of product preparation and transportation.
However, the high density solid-solid interfaces in SSLSBs may induce a series of problems such as interface resistance and volume distortion during cycling, which restricts the commercial application of SSLSBs. Thus, researchers have conducted extensive research on the solid-solid interfaces in recent years, including continuously improving the preparation process, characterizing the interface evolution process, and simulating and verifying the ion migration path. At present, some SSLSBs have realized commercial application.
SSLSBs mainly include sulfur-containing positive electrodes, lithium metal negative electrodes and solid electrolytes. Solid electrolytes are mainly divided into electrodeless solid electrolytes and organic solid electrolytes. Therefore, the researches on the interface of solid electrolyte can also be categorized in two types. One type is the internal interface of solid electrolyte, including the interface between inorganic electrolyte and inor-ganic electrolyte or the interface between inorganic and organic electrolyte. Another type mainly includes the interface between the solid electrolyte and the electrodes, which has a great influence on the chemical stability, volume stability and electronic ion conductivity of the battery. In recent years, researchers have found that the interface can be effectively improved via changing the mixing method, particle size, porous matrix and volumetric pressure. Besides, with the development of characterization technology, more and more in-situ interface characterization technologies provide more intuitively changing state of the interface.
This article systematically summarizes the problems and research status of the internal and external interfaces of SSLSBs, and discusses the future development trends and research priorities of SSLSBs.
Key words:  all-solid-state lithium-sulfur batteries    solid-solid interface    solid electrolyte    electrochemical performance
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TM911  
基金资助: 国家重点研发计划(2017YFB0703103);国家自然科学基金(51701052);中国博士后科学基金会(2017M620114)
通讯作者:  xxzhang@hit.edu.cn;ypxiong@hit.edu.cn   
作者简介:  贾政刚,2016年毕业于哈尔滨工业大学,获得理学学士学位。现为哈尔滨工业大学材料科学与工程学院博士研究生,在张学习教授和熊岳平教授的指导下进行研究。目前主要的研究领域为硫化物全固态电池中的界面行为。
张学习,哈尔滨工业大学教授,博士研究生导师。他于2003年获得哈尔滨工业大学博士学位。他的研究方向包括航天领域应用的能源材料和结构材料。在这些领域发表论文100余篇,申请专利40余项。
熊岳平,哈尔滨工业大学教授,博士研究生导师。作为主要参加者承担完成了NEDO等重大科研课题6项,专注SOFC耐久性问题的研究,承担了Ni/YSZ阳极碳沉积硫毒化及阴极硫毒化铬中毒等单电池性能衰减实验研究,亲身经历了日本SOFC产业化进程,熟知国内外该领域研究进展。
引用本文:    
贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
JIA Zhenggang, ZHANG Xuexi, QIAN Mingfang, GENG Lin,XIONG Yueping. Interface-related Issues in the Research of All-Solid-State Lithium-Sulfur Batteries: a Review. Materials Reports, 2021, 35(9): 9097-9107.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050229  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9097
1 Tarascon J M, Armand M. Nature,2001,414,359.
2 Armand M, Tarascon J M. Nature,2008,451,652.
3 Wang Q, Ping P, Zhao X, et al. Journal of Power Sources,2012,208,210.
4 Cheng X B, Zhang R, Zhao C Z, et al. Chemical Reviews,2017,117,10403.
5 Xu W, Wang J, Ding F, et al. Energy & Environmental Science,2014,7,513.
6 Hu Y S. Nature Energy,2016,1,16042.
7 Janek J, Zeier W G. Nature Energy,2016,1,16141.
8 Lin Z, Liang C D. Journal of Materials Chemistry A,2015,3,936.
9 Wang Z, Shen J, Liu J, et al. Advanced Materials,2019,31,1970236.
10 Shen J, Xu X, Liu J, et al. ACS Nano,2019,13,8986.
11 Lin Z, Liu Z, Dudney N J, et al. ACS Nano,2013,7,2829.
12 Fu K, Gong Y, Dai J, et al. Proceedings of the National Academy of Sciences of the United States of America,2016,113,7094.
13 Wang Z, Shen J, Ji S, et al. Small,2020,16,1906634.
14 Yang X, Luo J, Sun X. Chemical Society Reviews,2020,49,2140.
15 Pang Q, Nazar L F. ACS Nano,2016,10,4111.
16 Lu S, Cheng Y, Wu X, et al. Nano Letters,2013,13,2485.
17 Moon S, Jung Y H, Jung W K, et al. Advanced Materials,2013,25,6547.
18 Chung S H, Chang C H, Manthiram A. ACS Nano,2016,10,10462.
19 Yang X, Zhang H, Chen Y, et al. Nano Energy,2017,39,418.
20 Dixit M B, Zaman W, Hortance N, et al. Joule,2020,4,207.
21 Randau S, Weber D A, Koetz O, et al. Nature Energy,2020,5,259.
22 Rangasamy E, Sahu G, Keum J K, et al. Journal of Materials Chemistry A,2014,2,4111.
23 Hood Z D, Wang H, Li Y, et al. Solid State Ionics,2015,283,75.
24 Sakuda A, Kuratani K, Yamamoto M, et al. Journal of the Electrochemical Society,2017,164,A2474.
25 Zhu Y Z, He X F, Mo Y F. Journal of Materials Chemistry A,2016,4,3253.
26 Keller M, Appetecchi G B, Kim G T, et al. Journal of Power Sources,2017,353,287.
27 Choi J H, Lee C H, Yu J H, et al. Journal of Power Sources,2015,274,458.
28 Langer F, Bardenhagen I, Glenneberg J, et al. Solid State Ionics,2016,291,8.
29 Fu K, Gong Y, Dai J, et al. Proceedings of the National Academy of Sciences,2016,113,7094.
30 Zheng J, Tang M X, Hu Y Y. Angewandte Chemie-International Edition,2016,55,12538.
31 Chen L, Li Y, Li S P, et al. Nano Energy,2018,46,176.
32 Yang T, Zheng J, Cheng Q, et al. ACS Applied Materials & Interfaces,2017,9,21773.
33 Zhang J J, Zang X, Wen H J, et al. Journal of Materials Chemistry A,2017,5,4940.
34 Płcharski J, Weiczorek W. Solid State Ionics,1988,28-30,979.
35 Nairn K M, Best A S, Newman P J, et al. Solid State Ionics,1999,121,115.
36 Chen S J, Zhao Y R, Yang J, et al. Ionics,2017,23,2603.
37 Nairn K, Forsyth M, Every H, et al. Solid State Ionics,1996,86-88,589.
38 Wang Y J, Pan Y, Chen L. Materials Chemistry and Physics,2005,92,354.
39 Wang Y J, Pan Y, Kim D. Journal of Power Sources,2006,159,690.
40 Jung Y C, Lee S M, Choi J H, et al. Journal of the Electrochemical Society,2015,162,A704.
41 Zhao Y, Huang Z, Chen S, et al. Solid State Ionics,2016,295,65.
42 Zhai H, Xu P, Ning M, et al. Nano Letters,2017,17,3182.
43 Liu W, Liu N, Sun J, et al. Nano Letters,2015,15,2740.
44 Liu W, Lee S W, Lin D C, et al. Nature Energy,2017,2,17035.
45 Bae J, Li Y T, Zhang J, et al. Angewandte Chemie-International Edition,2018,57,2096.
46 Buvana P, Vishista K, Shanmukaraj D, et al. Ionics,2017,23,541.
47 Appetecchi G B, Croce F, Dautzenberg G, et al. Journal of the Electrochemical Society,1998,145,4126.
48 Wang H G, Yuan S, Ma D L, et al. Energy & Environmental Science,2015,8,1660.
49 Appetecchi G B, Croce F, Hassoun J, et al. Journal of Power Sources,2003,114,105.
50 Jeon J D, Kwak S Y, Cho B W. Journal of the Electrochemical Society,2005,152,A1583.
51 Zhang D, Xu X, Qin Y, et al. Chemistry-A European Journal,2020,26,1720.
52 Nagao M, Hayashi A, Tatsumisago M. Electrochimica Acta,2011,56,6055.
53 Kinoshita S, Okuda K, Machida N, et al. Solid State Ionics,2014,256,97.
54 Yu C, van Eijck L, Ganapathy S, et al. Electrochimica Acta,2016,215,93.
55 Nagao M, Hayashi A, Tatsumisago M. Journal of Materials Chemistry,2012,22,10015.
56 Suzuki K, Kato D, Hara K, et al. Electrochimica Acta,2017,258,110.
57 Nagao M, Hayashi A, Tatsumisago M. Energy Technology,2013,1,186.
58 Eom M, Son S, Park C, et al. Electrochimica Acta,2017,230,279.
59 Han F, Yue J, Fan X, et al. Nano Letters,2016,16,4521.
60 Yao X, Liu D, Wang C, et al. Nano Letters,2016,16,7148.
61 Wang Y, Lu D, Bowden M, et al. Chemistry of Materials,2018,30,990.
62 Yao H R, Yin Y X, Guo Y G. Chinese Physics B,2016,25.
63 Yao X, Huang N, Han F, et al. Advanced Energy Materials,2017,7,1602923.
64 Zhang Y B, Liu T, Zhang Q H, et al. Journal of Materials Chemistry A,2018,6,23345.
65 Nagao M, Hayashi A, Tatsumisago M, et al. Journal of Power Sources,2015,274,471.
66 Sheng O W, Jin C B, Luo J M, et al. Journal of Materials Chemistry A,2017,5,12934.
67 Zhao Y, Zhang Y, Bakenov Z, et al. Solid State Ionics,2013,234,40.
68 Fu A, Wang C, Pei F, et al. Small,2019,15,1804786.
69 Liang J, Sun Z H, Li F, et al. Energy Storage Materials,2016,2,76.
70 Sakuda A, Sato Y, Hayashi A, et al. Energy Technology,2019,7,1900077.
71 Nagao M, Imade Y, Narisawa H, et al. Journal of Power Sources,2013,222,237.
72 Yan H, Wang H, Wang D, et al. Nano Letters,2019,19,3280.
73 Han Q G, Li X L, Shi X X, et al. Journal of Materials Chemistry A,2019,7,3895.
74 Yersak T A, Son S B, Cho J S, et al. Journal of the Electrochemical So-ciety,2013,160,A1497.
75 Zhang W B, Schroder D, Arlt T, et al. Journal of Materials Chemistry A,2017,5,9929.
76 Zhang W, Weber D A, Weigand H, et al. ACS Applied Materials & Interfaces,2017,9,17835.
77 Koerver R, Zhang W B, de Biasi L, et al. Energy & Environmental Science,2018,11,2142.
78 Suzuki K, Mashimo N, Ikeda Y, et al. ACS Applied Energy Materials,2018,1,2373.
79 Ohno S, Koerver R, Dewald G, et al. Chemistry of Materials,2019,31,2930.
80 Zhu Y, He X, Mo Y. ACS Applied Materials & Interfaces,2015,7,23685.
81 Liu Y, Sun Q, Zhao Y, et al. ACS Applied Materials & Interfaces,2018,10,31240.
82 Chung H, Kang B. Chemistry of Materials,2017,29,8611.
83 Lau J, DeBlock R H, Butts D M, et al. Advanced Energy Materials,2018,8,1800933.
84 Wang B Q, Liu J, Sun Q, et al. Nanotechnology,2014,25,504007.
85 Zhao Y, Zheng K, Sun X L. Joule,2018,2,2583.
86 Cheng Q, Li A, Li N, et al. Joule,2019,3,1510.
87 Zhou W, Wang S, Li Y, et al. Journal of the American Chemical Society,2016,138,9385.
88 Hou G, Ma X, Sun Q, et al. ACS Applied Materials & Interfaces,2018,10,18610.
89 Wang C, Zhao Y, Sun Q, et al. Nano Energy,2018,53,168.
90 Zhang Z, Chen S, Yang J, et al. ACS Applied Materials & Interfaces,2018,10,2556.
91 Gao Y, Wang D, Li Y C, et al. Angewandte Chemie International Edition,2018,57,13608.
92 Zhou T, Shen J, Wang Z, et al. Advanced Functional Materials,2020,30,1909159.
93 Nie K, Hong Y, Qiu J, et al. Frontiers in Chemistry,DOI:10.3389/fchem.2018.00616.
94 Santhanagopalan D, Qian D, McGilvray T, et al. The Journal of Physical Chemistry Letters,2014,5,298.
95 Park K, Yu B C, Jung J W, et al. Chemistry of Materials,2016,28,8051.
96 Walther F, Koerver R, Fuchs T, et al. Chemistry of Materials,2019,31,3745.
97 Okumura T, Nakatsutsumi T, Ina T, et al. Journal of Materials Chemistry,2011,21,10051.
98 Hakari T, Deguchi M, Mitsuhara K, et al. Chemistry of Materials,2017,29,4768.
99 Liang J N, Sun Q, Zhao Y, et al. Journal of Materials Chemistry A,2018,6,23712.
100 Wang C, Adair K R, Liang J, et al. Advanced Functional Materials,2019,29,1900392.
101 Wu B B, Wang S Y, Lochala J, et al. Energy & Environmental Science,2018,11,1803.
102 Liang J Y, Zeng X X, Zhang X D, et al. Journal of the American Che-mical Society,2018,140,6767.
103 Ma C, Cheng Y, Yin K, et al. Nano Letters,2016,16,7030.
104 Wang Z, Santhanagopalan D, Zhang W, et al. Nano Letters,2016,16,3760.
105 Gong Y, Zhang J, Jiang L, et al. Journal of the American Chemical So-ciety,2017,139,4274.
106 Li X N, Liang J W, Li X, et al. Energy & Environmental Science,2018,11,2828.
107 Wu X H, Villevieille C, Novak P, et al. Physical Chemistry Chemical Physics,2018,20,11123.
108 Wang C, Li X, Zhao Y, et al. Small Methods,2019,3,1900261.
[1] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[2] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[3] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[4] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[5] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[6] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[7] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[8] 罗志虹, 冀晨皓, 朱广彬, 李富杰, 周立, 罗鲲. 提高锂电极稳定性的方法及其在锂氧电池中的应用[J]. 材料导报, 2020, 34(19): 19067-19074.
[9] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[10] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[11] 邓安强, 罗永春, 王浩, 赵磊, 郑坤. 新型无镁YNi3.5-xAlx(x=0~0.3)储氢合金的结构和电化学性能[J]. 材料导报, 2020, 34(14): 14110-14115.
[12] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[13] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[14] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[15] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed