Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9041-9048    https://doi.org/10.11896/cldb.20050224
  轻质合金 |
镁合金海水电池阳极材料电化学性能研究进展
王玉娇1, 江海涛1,*, 张韵1, 王盼盼1, 于博文1, 徐哲2
1 北京科技大学工程技术研究院,北京 100083
2 中国船舶工业综合技术经济研究院,北京 100081
Research Progress on the Electrochemical Performance of Anode Materials for Magnesium Alloy Seawater Batteries
WANG Yujiao1, JIANG Haitao1,*, ZHANG Yun1, WANG Panpan1, YU Bowen1, XU Zhe2
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
2 China Institute of Marine Technology & Economy, Beijing 100081, China
下载:  全 文 ( PDF ) ( 8266KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁及镁合金以其低密度、高电化学活性、高比容量等优点成为优异的海水电池阳极材料,自20世纪40年代以来备受关注。镁合金作海水电池阳极材料常用于Mg/C海水溶解氧电池及Mg/AgCl、Mg/PbCl或Mg/CuCl海水激活电池。目前常见的镁合金海水电池阳极材料体系为Mg-Al-Zn、Mg-Hg-Ga及Mg-Al-Pb系,此类材料能够满足大部分海下工作设备尤其是小功率用电设备的用电需求。
然而,对海下大功率用电设备(如鱼雷等)而言,镁海水电池仍存在一些亟待解决的问题,如由于负差数效应、放电产物膜钝化、电压滞后及粒子脱附等问题导致电池阳极利用率低、放电活性下降。目前提高镁合金阳极材料放电性能的思路主要为合金化、改变加工工艺及微观组织特征三个方面。
常见海水电池用镁合金阳极材料合金化元素Al、Zn、Hg、Ga、Pb、In、Sn等通过改变合金微观组织特征调控合金的电化学性能,取得了显著的成果;加工工艺(如均匀化热处理、挤压、轧制后退火等)通过均匀合金微观组织、细化晶粒尺寸、破碎粗大第二相粒子、减少塑性变形导致的晶内缺陷以减少析氢副反应、提高阳极利用率;微观组织如杂质及成分均匀性、第二相粒子、晶粒尺寸、织构及放电产物膜等对镁合金阳极放电性能的影响视其特征而定。
本文归纳了近年来镁及镁合金作海水电池阳极材料时电化学性能提升方面的研究进展,分别从合金化、加工工艺及微观组织特征三个方面综述了镁合金电化学性能的影响因素及其作用机理,分析了镁合金海水电池阳极材料电化学性能存在的问题及其应用前景,以期为提高镁合金阳极材料放电性能及发展镁合金海水电池提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉娇
江海涛
张韵
王盼盼
于博文
徐哲
关键词:  镁合金海水电池阳极材料  电化学性能  合金化    
Abstract: Since 1940s, magnesium and magnesium alloys have become excellent anode materials for seawater batteries and received much attention because of their low density, high electrochemical activity and high specific capacity. Magnesium alloys are commonly used in Mg/C seawater dissolved oxygen batteries and Mg/AgCl, Mg/PbCl or Mg/CuCl seawater activated batteries. The current common magnesium alloy seawater battery anode material systems are Mg-Al-Zn, Mg-Hg-Ga and Mg-Al-Pb series, such materials can meet the power requirements of most subsea working equipment, especially low-power electrical equipment.
However, magnesium alloy seawater batteries cannot meet the power needs of some high-power electrical equipment under the sea (such as torpedoes) because of the disadvantages of low battery anode utilization and discharge activity caused by passivation of the product film, voltage lag, and particle desorption. What's more, alloying, modifying processing technology and microstructure characteristic are mainly strategies to improving the discharge performance of magnesium alloy anode materials.
The alloying elements such as Al, Zn, Hg, Ga, Pb, In, Sn, etc. for common magnesium alloy seawater batteries have achieved remarkable achievements in adjusting the electrochemical properties by modifying the microstructure of the alloy. Processing technologies such as homogenization treatment, extrusion and rolling followed by annealing treatment reduce the side reactions of hydrogen evolution and improve anode utilization by homogenizing microstructure, refining grain size, breaking coarse second phase particles, and reducing the intracrystalline defects caused by plastic deformation. The influence of microstructure such as impurities and composition homogenization, second phase particles, grain size, texture and discharge production film on the discharge performance of magnesium alloy anode depends on their characteristics.
This article summarizes the research progress of the improvement of electrochemical performance when magnesium and magnesium alloys are used as anode materials for seawater batteries. The influencing factors and mechanism of the electrochemical performance of magnesium alloys are summarized from alloying, processing technology and microstructure characteristics. The existing problems and application prospects of the electrochemical performance of magnesium alloy seawater battery anode materials are analyzed. It aims to provide a reference for improving the discharge performance of magnesium alloy anode materials and developing magnesium alloy seawater batteries.
Key words:  anode materials for magnesium alloy seawater battery    electrochemical property    alloying
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TG174.4  
基金资助: 中央高校基本科研业务费(2302019FRF-IC-19-018)
通讯作者:  jianght@ustb.edu.cn   
作者简介:  王玉娇,北京科技大学博士研究生。2013年9月至2017年6月,在安徽工业大学获得材料成型及控制工程专业学士学位,2017年9月至今,在北京科技大学工程技术研究院攻读材料科学与工程专业博士学位。目前,参与国际合作等多个项目,研究方向为镁合金的腐蚀行为。
江海涛,北京科技大学研究员,博士研究生导师。2004年博士研究生毕业于西北工业大学,师从李淼泉教授,2004—2006年在北京科技大学材料学院从事博士后工作。2006年至今在北京科技大学高效轧制国家工程研究中心(北京科技大学工程技术研究院)工作,主要从事钢铁、有色金属材料的品种开发及板带生产技术研究。与鞍钢、武钢、邯钢、马钢等国内大中型钢铁企业合作,开发了X42—X100管线钢、热(冷)轧汽车板、容器锅炉板、集装箱板等钢铁板带产品;与美国波音等企业进行了高成形性能镁合金的开发等研究;与湖南金天钛业等合作进行了TA2、TC4钛合金板材及钛钢复合板等材料开发及板带生产工艺研究。在研国家自然科学基金、国家重点研发计划、北京市科技计划项目十余项,发表学术论文二百余篇,获授权专利十余项。
引用本文:    
王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
WANG Yujiao, JIANG Haitao, ZHANG Yun, WANG Panpan, YU Bowen, XU Zhe. Research Progress on the Electrochemical Performance of Anode Materials for Magnesium Alloy Seawater Batteries. Materials Reports, 2021, 35(9): 9041-9048.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050224  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9041
1 Feng Yan, Wang Richu, Peng Chaoqun. The Chinese Journal of Nonferrous Metals,2011,21(2),259(in Chinese).
冯艳,王日初,彭超群.中国有色金属学报,2011,21(2),259.
2 Song Jiangfeng, She Jia, Chen Daolun, et al. Journal of Magnesium and Alloys,2020,8(1),1.
3 Kostiantyn V Kravchyk, Marc Walter, Maksym V Kovalenko. Communications Chemistry,2019,2,84.
4 Feng Yan, Le Ge, He Yuqing, et al. Transactions of Nonferrous Metals Society of China,2018,28,2274.
5 Wang X J, Xu D K, Wu R Z, et al. Journal of Materials Science & Technology,2018,34(2),245.
6 Wang Naiguang, Wang Richu, Peng Chaoqun, et al. The Chinese Journal of Nonferrous Metals,2016,26(5),1035(in Chinese).
王乃光,王日初,彭超群,等.中国有色金属学报,2016,26(5),1035.
7 Lin Yaqing, Wang Wei, Sang Lin. Journal of Materials Protection,2015,48(11),38.
8 Cheng Shiming, Cheng Weili, Gu Xiongjie, et al. Journal of Alloys and Compounds,2020,823,153779.
9 Li Jiarun, Zhang Binbin, Wei Qinyi, et al. Electrochimica Acta,2017,238,156.
10 Li Jiarun, Chen Zhuoyuan, Jing Jiangping, et al. Journal of Materials Science & Technology,2020,41,33.
11 Wu Junliang, Wang Richu, Feng Yan, et al. Journal of Alloys and Compounds,2018,765,736.
12 Wang Naiguang, Wang Richu, Peng Chaoqun, et al. Corrosion Science,2012,64,17.
13 Wang Naiguang, Wang Richu, Peng Chaoqun, et al. Corrosion Science,2014,81,85.
14 Deng Min, Wang Richu, Feng Yan, et al. Transactions of Nonferrous Metals Society of China,2016,26,2144.
15 Shi Yinchun, Peng Chaoqun, Feng Yan, et al. Materials and Design,2017,124,24.
16 Mathieu S, Rapin C, Hazan J, et al. Corrosion Science,2002,44(12),2737.
17 Song Guangling, Atrens Atrens, Wu Xianliang, et al. Corrosion Science,1998,40(10),1769.
18 Wang Naiguang, Wang Richu, Peng Chaoqun, et al. Transactions of Nonferrous Metals Society of China,2014,24,2427.
19 Liu Xuan, Xue Jilai, Zhang Dan. Journal of Alloys and Compounds,2019,790,822.
20 Yuasa Motohiro, Huang Xinsheng, Suzuki Kazutaka, et al. Journal of Power Sources,2015,297,449.
21 Manivannan S, Dinesh P, Kumaresh Babu S P, et al. Journal of Magnesium and Alloys,2015,3,86.
22 Li Jiarun, Jiang Quantong, Sun Huyuan, et al. Corrosion Science,2016,111,288.
23 Song G L, Bowles A L, Stjohn D H. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2004,366(1),74.
24 Li Xiao, Hu Shuiping, Han Tianqi. Materials Reports B: Research Papers,2020,34(5),10088(in Chinese).
李萧,胡水平,韩天棋.材料导报:研究篇,2020,34(5),10088.
25 Luo Shuang, Ma Zhengqing. Materials Protection,2016,49(8),12(in Chinese).
罗双,马正青.材料保护,2016,49(8),12.
26 Wang Ping, Li Jianping, Guo Yongchun, et al. Journal of University of Science and Technology Beijing,2011,33(9),1116.
27 Wang Naiguang, Wang Richu, Peng Chaoqun, et al. Transactions of Nonferrous Metals Society of China,2010,20(8),1403.
28 Wang Richu, Wang Naiguang, Peng Chaoqun, et al. Nonferrous Metals Science and Engineering,2013,4(3),40(in Chinese).
王日初,王乃光,彭超群,等.有色金属科学与工程,2013,4(3),40.
29 Cao Dianxue, Wu Lin, Wang Guiling, et al. Journal of Power Sources,2008,183,799.
30 Wen Li, Yu Kun, Xiong Hanqing, et al. Electrochimica Acta,2016,194,40.
31 Liu W, Cao F, Chang L, et al. Corrosion Science,2009,51,1334.
32 Meng J, Sun W, Tian Z, et al. 2-Corrosion performance of magnesium(Mg) alloys containing rare-earth (RE) elements, Woodhead Publi-shing, UK,2013,pp.38.
33 Shi Yinchun, Peng Chaoqun, Feng Yan, et al. Journal of Alloys and Compounds,2017,721,392.
34 Marta Mohedano, Carsten Blawert, Kiryl A Yasakau, et al. Materials Characterization,2017,128,85.
35 Feng Yan, Wang Richu, Yu Kun, et al. Journal of Alloys and Compounds,2009,473,215.
36 Feng Yan, Wang Richu, Yu Kun, et al. Transactions of Nonferrous Metals Society of China,2007,17,1363.
37 Udhayan R, Bhatt D P. Journal of Power Sources,1996,63,103.
38 Yu Kun, Tan Xin, Hu Yanan, et al. Corrosion Science,2011,53,2035.
39 Feng Yan, Wang Richu, Peng Chaoqun. Transactions of Nonferrous Metals Society of China,2013,23,2650.
40 Zhao Hongyang, Bian Pei, Ju Dongying. Journal of Environmental Sciences Supplement,2009,21,S88.
41 Aung N N, Zhou W. Corrosion Science,2010,52,589.
42 Yang M, Shi Y C, Chen W Z, et al. The Chinese Journal of Nonferrous Metals,2017,27(8),1603(in Chinese).
杨明,史银春,陈文正,等.中国有色金属学报,2017,27(8),1603.
43 Feng Y, Wang R, Peng C. Intermetallics,2012,33,120.
44 Zhang Junchang, Feng Yan, Wang Naiguang, et al. Nonferrous Metals Science and Engineering,2017,8(3),54(in Chinese).
张俊昌,冯艳,王乃光,等.有色金属科学与工程,2017,8(3),54.
45 Jonsson M, Thierry D, Bozec N L. Corrosion Science,2006,48,1193.
46 Andrei M, Gabriele F, Bonora P L, et al. Materials and Corrosion,2003,54,5.
47 Yan Feng, Wang Richu, Peng Chaoqun, et al. Corrosion Science,2010,52,3474.
48 Arrabal R, Matykina E, Pardo A, et al, Corrosion Science,2012,55,351.
49 Gusieva K, Davies C H J, Scully J R, et al. International Material Review,2015,60,169.
50 Hanawalt J, Nelson C, Peloubet J. Transactions of the American Institute of Mining and Metallurgical Engineers,1942,147,273.
51 Atrens Andrej, Song Guangling, Cao Fuyong, et al. Journal of Magne-sium and Alloys,2013,1,177.
52 Liu Ming, Uggowitzer Peter J, Nagasekhar A V, et al. Corrosion Science,2009,51,602.
53 Cai Changhong, Song Renbo, Wen Erding, et al. Materials & Design,2019,182(15),108038.
54 Birbilis N, Ralston K D, Virtanen S, et al. Corrosion Engineering Science and Technology,2010,45,224.
55 op't Hoog C, Birbilis N, Estrin Y. Advanced Engineering Materials,2008,10,579.
56 Ralston K D, Birbilis N, Davies C H J. Scripta Materialia,2010,63,1201.
57 Song Guangling, Mishra Raja, Xu Zhenqing. Electrochemistry Communications,2010,12,1009.
58 Xiong Hanqing, Yu Kun, Yin Xiang, et al. Journal of Alloys and Compounds,2017,708,652.
59 Pan Chengcheng, Ma Chao, Xia Dahai. Journal of Chinese Society for Corrosion and Protection,2019,39(6),495(in Chinese).
潘成成,马超,夏大海.中国腐蚀与防护学报,2019,39(6),495.
[1] 卢祺, 黄锋, 郭逊. 合金化对Mg-Ni系合金储氢性能的影响:综述[J]. 材料导报, 2021, 35(9): 9033-9040.
[2] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[3] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[4] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[5] 张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
[6] 王诗蒙, 杨文朋, 崔红保, 郭学锋, 孙尧. Mg-Zn系合金沉淀硬化研究进展[J]. 材料导报, 2020, 34(Z1): 312-315.
[7] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[8] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[9] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[10] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[11] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[12] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[13] 崔田路, 曹中秋, 贾中秋, 于佳蕊, 徐欢, 张轲, 王艳. 块体纳米晶Fe-50Cu合金在H2SO4溶液中的电化学腐蚀行为[J]. 材料导报, 2020, 34(20): 20096-20102.
[14] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[15] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed