Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5102-5106    https://doi.org/10.11896/cldb.20010139
  金属与金属基复合材料 |
铌微合金化技术在中高碳钢中的应用现状与发展
张朝磊1, 邵洙浩1, 李戬2, 王文军3, 蒋波1
1 北京科技大学材料科学与工程学院,北京 100083
2 青海大学机械工程学院,西宁 810016
3 中信金属股份有限公司,北京 100004
Application and Development of Niobium Microalloying Technology in Medium and High Carbon Steel
ZHANG Chaolei1, SHAO Zhuhao1, LI Jian2, WANG Wenjun3, JIANG Bo1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 School of Mechanical Engineering, Qinghai University, Xining 810016, China
3 CITIC Metal Co., Ltd, Beijing 100004, China
下载:  全 文 ( PDF ) ( 3301KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铌微合金化技术在中国发展已逾40年,其基础研究和工业应用一直集中在以板材为主的低碳钢领域。以长材为主的中高碳钢具有碳含量高、工艺流程长且复杂、基础强度高、性能要求特殊且多样等特点,使得铌在低碳钢中的一些突出作用在其中难以有效发挥。
一方面,中高碳钢的碳含量对铌的固溶能力存在影响,但是国内外研究结果差别较大,且一些结论与传统认识和大多数实验研究结果也不一致。因此,目前对于铌在中高碳钢中的固溶能力存在较大争议,仍然需要更多的实证研究加以分析。这导致在中高碳钢中添加多少铌才经济有效存在争议。另一方面,在中高碳钢中,铌的存在状态特别是对纳米级的析出相的表征一直存在困难。不均匀分布的大尺寸含铌第二相粒子产生的不利影响及其如何消除有待深入研究。
本文概述了铌微合金化技术的国内外研究现状与发展趋势,以及中高碳钢的自身特点。从铌的固溶能力,主要作用与在非调质钢、弹簧钢、硬线和轴承钢中的应用情况,以及存在的主要问题三个方面,综述了铌微合金化技术在中高碳钢中面临的机遇与挑战。明确指出,必须摒弃传统思路,研究铌在中高碳钢中的共性科学问题,特别是采用新技术多尺度表征铌的状态,从而推动铌微合金化技术在中高碳钢中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张朝磊
邵珠浩
李戬
王文军
蒋波
关键词:  微合金化技术  特殊钢  中高碳钢  固溶析出    
Abstract: Niobium microalloying technology has been developed in China for more than 40 years, and its basic research and industrial application have been focused on the field of plate-based low-carbon steel. The medium and high carbon steel based on long material has the characteristics of high carbon content, long and complex process, high foundation strength, special and diverse performance requirements, etc. It is difficult for niobium to play an important role in the medium and high carbon steel.
On the one hand, the carbon content of medium and high carbon steel has an effect on the solution ability of niobium, but the research results at home and abroad are quite different, and some conclusions are not consistent with the traditional understanding and most of the experimental results. Therefore, there is a controversy about the solution ability of niobium in medium and high carbon steel, and more empirical research is still needed to analyze. This leads to a dispute about how much niobium is economically effective in medium and high carbon steels. On the other hand, the existence of niobium in medium and high carbon steel, especially the characterization of nano precipitates, has been difficult. How to eliminate the adverse effects caused by the large-scale niobium containing second phase particles with inhomogeneous distribution remains to be further studied.
The research status and development trend of microalloying technology at China and the other part of the word, as well as the characteristics of medium and high carbon steel are summarized. The opportunity and challenge of niobium microalloying technology in medium and high carbon steel are reviewed. It mainly includes the solution ability of niobium, the main effects and application in direct-cooled forging steel, spring steel, hard wire and bearing steel, and the main problems. It is clearly pointed out that the traditional thinking must abandon, strengthen the basic research, and study the common and individual problems of niobium in medium and high carbon steel. In particular, new technologies are used to characterize the state of niobium at multiple scales. So as to promote the application of niobium microalloying technology in medium and high carbon steel.
Key words:  microalloying technology    special steel    medium and high carbon steel    solid solution and precipitation
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TG142.1  
基金资助: 青海省基础研究计划项目(2018-ZJ-747);中信-CBMM铌钢研究与开发项目
通讯作者:  zhangchaolei@ustb.edu.cn   
作者简介:  张朝磊,北京科技大学副教授。2013年1月毕业于北京科技大学材料加工工程专业,获工学博士学位。毕业后留校工作至今,主要从事高品质特殊钢成分组织设计、质量控制与应用技术、汽车和机器人关重件制造技术等研究工作。以第一作者和通讯作者身份发表学术论文40余篇,授权发明专利10余项。
引用本文:    
张朝磊, 邵洙浩, 李戬, 王文军, 蒋波. 铌微合金化技术在中高碳钢中的应用现状与发展[J]. 材料导报, 2021, 35(5): 5102-5106.
ZHANG Chaolei, SHAO Zhuhao, LI Jian, WANG Wenjun, JIANG Bo. Application and Development of Niobium Microalloying Technology in Medium and High Carbon Steel. Materials Reports, 2021, 35(5): 5102-5106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010139  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5102
1 DeArdo A J. International Materials Reviews,2003,48(6),371.
2 Yong Qilong, Ma Mingtu, Wu Baorong. Microalloyed steel-physical and mechanical metallurgy, China Machine Press, China,1989(in Chinese).
雍歧龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金,机械工业出版社,1989.
3 Klaus V, Guimarues R C. Microalloying Technology,2002,2(2),49.
4 Morrison W B. Materials Science and Technology,2009,25(9),1066.
5 Ching Central Iron & Steel Research Institute. In: Proceedings of International Symposium on Nb-bearing Steel Technology Development in China for the 30th Anniversary Celebration. Beijing,2009,pp.101(in Chinese).
钢铁研究总院结构材料所.中国含铌钢技术发展30周年国际研讨会.北京,2009,pp.101.
6 Matlock D K, Speer J G. Materials Science and Technology,2009,25(9),1118.
7 Jansto S G. Metallurgical and Materials Transactions B,2014,45,438.
8 Palmiere E J, Garcia C I, DeArdo A J. Metallurgical and Materials Transactions A,1994,25(2),277.
9 Gong P, Palmiere E J, Rainforth W M. Acta Materialia,2015,97,392.
10 Lakshmanan V K, Kirkaldy J S. Metallurgical and Materials Transactions A,1984,15(3),541.
11 Ohtani H, Nishizawa T, Tanaka T, et al. In: Proceedings of the Japan Canada Seminar on Secondary Steelmaking. Tokyo,1985,pp.1.
12 Hulka K, Heisterkamp F. In: Fundamental of Microalloying Forging Steels. Golden, USA,1986,pp.225.
13 Balasubramanian K, Kroupa A, Kirkaldy J S. Metallurgical and Materials Transactions A,1992,23(3),729.
14 Mi Y F, Cao J C, Zhang Z Y, et al. Iron and Steel,2012,47(3),84(in Chinese).
米永峰,曹建春,张正延,等.钢铁,2012,47(3),84.
15 Jiang B, Fang W, Chen R M, et al. Materials Science and Engineering,2019,748A,180.
16 Zhang C L, Liu Y Z. Materials Reports A: Review Papers,2017,31(3),58(in Chinese).
张朝磊,刘雅政.材料导报:综述篇,2017,31(3),58.
17 Zhang W, Wang H, Zhang C L, et al. Materials Science & Engineering Technology,2020,51,238.
18 The Chinese Society for Metals. “Development and application of non quenched and tempered steel for high performance and large size direct cutting”Evaluation meeting of scientific and technological achievements of the project held in Beijing [DB/OL]. http://www.csm.org.cn/tpxw/2020116/1579153340218_1.html.2020-01-16(in Chinese).
中国金属学会.“高性能大规格直接切削用非调质钢开发及推广应用”项目科技成果评价会在北京召开[DB/OL].http://www.csm.org.cn/tpxw/2020116/1579153340218_1.html.2020-01-16.
19 Zhang B, Wang F M, Wu H L, et al. Heat Treatment of Metals,2011,36(5),29(in Chinese).
张博,王福明,吴华林,等.金属热处理,2011,36(5),29.
20 Zhang C L, Zhao F, Wen X L, et al. Transactions of Materials and Heat Treatment,2015,36(9),167(in Chinese).
张朝磊,赵帆,文新理,等.材料热处理学报,2015,36(9),167.
21 Zhang C L, Liu Y Z, Zhou L Y, et al. Journal of Iron and Steel Research International,2012,19(3),47.
22 Zhang C L, Han Q, Sun S, et al. Heat Treatment of Metals,2010,35(11),42(in Chinese).
张朝磊,韩强,孙帅,等.金属热处理,2010,35(11),42.
23 Zhang C L, Liu Y Z, Jiang C, et al. Journal of Iron and Steel Research International,2011,18(6),49.
24 Wang Dehu. In: International Seminar on Production and Application Technology of High Quality Special Steel in 2019. Beijing, China,2019,pp.18(in Chinese).
王德虎.2019年高品质特殊钢生产和应用技术国际研讨会.北京,2019,pp.18.
25 Gu K J, Wei J, Yu H Y, et al. Iron and Steel,2005,40(11),24(in Chinese).
顾克井,魏军,虞海燕,等.钢铁,2005,40(11),24.
26 Zhang Yongqing. Strengthening effect and application case of niobium in medium and high carbon steel. World Metals,2018-06-26(B08)(in Chinese).
张永青.铌在中高碳钢中的强化效果及应用案例.世界金属导报,2018-06-26(B08).
27 Zhang Z Y, Yong Q L, Sun X J, et al. Iron and Steel,2012,47(4),79(in Chinese).
张正延,雍岐龙,孙新军,等.钢铁,2012,47(4),79.
28 Yong Q L, Zhang Z Y, Sun X J, et al. Journal of Iron and Steel Research International,2017,24(9),973.
29 Dey I, Chandra S, Saha R, et al. Materials Characterization,2018,140,45.
30 Sun M L, Jiang B, Chen G, et al. Heat Treatment of Metals,2016,41(4),71(in Chinese).
孙曼丽,江波,陈刚,等.金属热处理,2016,41(4),71.
31 Zhang C L, Yu W M, Wang S W, et al. Transactions of Materials and Heat Treatment,2015,36(2),97(in Chinese).
张朝磊,余伟铭,王嗣雯,等.材料热处理学报,2015,36(2),97.
32 Deng S H, Liu Q Y, Chao Y L, et al. Shanghai Metals,2015,37(6),5(in Chinese).
邓素怀,刘清友,晁月林,等.上海金属,2015,37(6),5.
33 Li J J, Mei Z, Lyu Y, et al. Hot Working Technology,2016,45(12),51(in Chinese).
李佳佳,梅珍,吕莹,等.热加工工艺,2016,45(12),51.
34 He G N, Zhou N B, Zhang C L, et al. Journal of Tribology,2018,140(6),061608-1.
35 Zhao H, Wang H X. Manufacturing Automation,2015(3),99(in Chinese).
赵辉,王红霞.制造业自动化,2015(3),99.
36 Wu X D, Chen R L, Zhang D X, et al. Foundry,2013,62(11),1111(in Chinese).
吴晓东,陈瑞泷,掌道新,等.铸造,2013,62(11),1111.
37 Xiao B, Lei Y C, Wu X D, et al. Foundry,2014,63(4),381(in Chinese).
肖波,雷玉成,吴晓东,等.铸造,2014,63(4),381.
38 Zhou L Y, Zhang C L, Liu X, et al. Transactions of Materials and Heat Treatment,2014,35(8),153(in Chinese).
周乐育,张朝磊,刘翔,等.材料热处理学报,2014,35(8),153.
[1] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[2] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[3] 马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164.
[4] 桂晓露, 王琨, 苏浩, 高古辉, 白秉哲. 重载铁路用贝氏体钢轨显微组织定量表征[J]. 材料导报, 2020, 34(22): 22136-22141.
[5] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[6] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[7] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 低密度钢中有序析出相的研究进展[J]. 材料导报, 2019, 33(23): 3979-3989.
[8] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[9] 李凤侠, 张俊, 赵呈刚. 基于文献计量学的氢脆研究的演进、热点和趋势分析[J]. 材料导报, 2019, 33(Z2): 488-496.
[10] 肖罡, 卜晓兵, 杨钦文, 杨旭静, 冯江华. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019, 33(22): 3811-3814.
[11] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[12] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[13] 张朝磊, 魏旸, 方文, 苗红生, 巴鑫宇, 刘雅政. 谐波减速器特殊钢材质柔轮的组织和力学性能分析[J]. 材料导报, 2018, 32(16): 2842-2846.
[14] 张朝磊, 魏旸, 方文, 苗红生, 王青海. 非调质钢36MnVS4汽车发动机连杆胀断缺陷分析[J]. 《材料导报》期刊社, 2018, 32(14): 2458-2461.
[15] 文新理, 章清泉, 陈列. 650 ℃第三代超超临界锅炉管候选钢种的化学成分研究现状[J]. 材料导报, 2018, 32(13): 2167-2175.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed