Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3811-3814    https://doi.org/10.11896/cldb.18090288
  金属与金属基复合材料 |
高锰Hadfield钢单向拉伸变形及断裂行为研究
肖罡1,2,3,卜晓兵4,杨钦文1,,杨旭静1,冯江华2
1 湖南大学汽车车身先进设计制造国家重点实验室,长沙 410082
2 中车株洲电力机车研究所有限公司,株洲 412001
3 湖南科技大学难加工材料高效精密加工湖南省重点实验室,湘潭 411201
4 中国汽车技术研究中心有限公司,天津 300300
Research on Monotonic Tension Deformation and Fracture Behavior of the High Manganese Hadfield Steel
XIAO Gang1,2,3, BU Xiaobing4, YANG Qinwen1, YANG Xujing1, FENG Jianghua2
1 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
2 CRRC Zhuzhou Institute Co., Ltd, Zhuzhou 412001
3 Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material, Hunan University of Science and Technology,
Xiangtan 411201
4 China Automotive Technology & Research Center Co., Ltd, Tianjin 300300
下载:  全 文 ( PDF ) ( 2493KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本研究测试了高锰Hadfield钢室温下在大应变速率(分别为6×10-3 s-1、6×10-4 s-1、3×10-5 s-1和6×10-6 s-1)范围内的单向拉伸变形的力学响应行为,分析了合金的变形行为及裂纹萌生与扩展规律。结果表明:在不同应变速率下均存在动态应变时效现象,且延伸率具有正的应变速率敏感性。拉伸变形后,奥氏体晶粒内产生了大量位错和层错,以及细小且相互平行的形变孪晶。应变硬化率随真应变的增加依次表现为“减小—增大—减小”三个演变阶段。其中,第二阶段的增大现象是形变孪晶的急剧增加而形成孪生硬化所致。垂直于拉伸变形方向分布的高密度滑移带是裂纹萌生的主要区域。裂纹扩展以沿垂直拉伸方向的穿晶形式为主,结合沿孪晶方向进行。高锰Hadfield钢的主要变形机制是滑移与孪生的相互竞争。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖罡
卜晓兵
杨钦文
杨旭静
冯江华
关键词:  高锰Hadfield钢  应变硬化  断裂  变形机制    
Abstract: The monotonic tensile test of the high manganese Hadfield steel has been investigated at various strain rates of 6×10-3 s-1, 6×10-4 s-1, 3×10-5 s-1and 6×10-6 s-1. The deformation behavior and the crack initiation and propagation phenomenon of the steel have been analysed. The results illustrate that the studied alloy shows dynamic strain aging under all the selected strain rates. The ductility exhibits a positive strain rate sensitivity. A mass of dislocations and stacking faults are generated in the austenite grain after deformation, together with the generation of parallel tiny deformation twins. The strain hardening rate experiences three stages of “decrease—increase—decrease”, in which the second stage attributes to the continuous produce of deformation twins. The high density slip band perpendicular to the tension direction is beneficial for the initiation of crack. The crack is propagated in the transgranular form, together with propagation along twin form. The competition between gliding and twinning is the main deformation mechanism of the tested steel.
Key words:  high manganese hadfield steel    strain hardening    fracture    deformation mechanism
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TG142.1  
基金资助: 中国博士后科学基金(2019M652755);湖南省自然科学基金(2018JJ3178);难加工材料高效精密加工湖南省重点实验室开放基金
作者简介:  肖罡,湖南科技大学,高级工程师,中车株洲电力机车研究所有限公司与湖南大学联合培养博士后。2016年10月毕业于湖南大学,获机械工程专业博士学位。同年入职湖南科技大学任教至今,主要从事材料塑性成形技术、增/减材复合制造技术,以及燃料电池关键部件结构优化与制造等方面研究工作。在国内外重要期刊发表论文40余篇,申报发明专利20余项。
杨钦文,湖南大学,副教授。2013年11月毕业于加拿大卡尔加里大学,获机械工程专业博士学位。2014年1月入职湖南大学任教至今,主要从事燃料电池系统设计与控制,以及金属塑性成形工艺设计与控制相关研究。发表SCI论文16篇,申报发明专利6项。
引用本文:    
肖罡, 卜晓兵, 杨钦文, 杨旭静, 冯江华. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019, 33(22): 3811-3814.
XIAO Gang, BU Xiaobing, YANG Qinwen, YANG Xujing, FENG Jianghua. Research on Monotonic Tension Deformation and Fracture Behavior of the High Manganese Hadfield Steel. Materials Reports, 2019, 33(22): 3811-3814.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090288  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3811
[1] Allain S, Chateau J P, Bouaziz O. Materials Science & Engineering A, 2004, 387(1), 143.
[2] Zhang F. Journal of Yanshan University, 2010, 34(3), 189(in Chinese).张福成. 燕山大学学报, 2010, 34(3), 189.
[3] Park K T, Jin K G, Sang H H, et al. Materials Science & Engineering A, 2010, 527(16), 3651.
[4] Zhang F, He C, Zhou D. Journal of Hunan University (Natural Scie-nces), 2016, 43(12), 11. (in Chinese)张福全, 何翠, 周惦武. 湖南大学学报(自然科学版), 2016, 43(12), 11.
[5] Bal B. International Journal of Steel Structures, 2018, 18(1), 13.
[6] Owen W S, Grujicic M. Acta Materialia, 1998, 47(1), 111.
[7] Lindroos M, Laukkanen A, Cailletaud G, et al. Wear, 2018, s396-397, 56.
[8] Korshunov L G, Chernenko N L. Physics of Metals & Metallography, 2018, 119(7), 700.
[9] Qian L, Feng X, Zhang F. Materials Transactions, 2011, 52, 1623.
[10] Zhang M, Lv B, Zhang F, et al. Transactions of the Iron & Steel Institute of Japan, 2012, 52(11), 2093.
[11] Liu F C, Yang Z N, Zheng C L, et al. Scripta Materialia, 2012, 66(7), 431.
[12] Karjalainen L P, Hamada A, Misra R D K, et al. Scripta Materialia, 2012, 66(12), 1034.
[13] Qian L, Guo P, Meng J, et al. Journal of Materials Science, 2013, 48(4), 1669.
[14] Guo P, Qian L, Meng J, et al. Acta Metallurgica Sinica, 2014, 50(4), 415(in Chinese).郭鹏程, 钱立和, 孟江英, 等. 金属学报, 2014, 50(4), 415.
[15] Mccormigk P G. Acta Metallurgica, 1972, 20(3), 351.
[16] Chen C, Lv B, Wang F, et al. Materials Science & Engineering A, 2017, 695, 144.
[17] Gnyusov S F, Rotshtein V P, Mayer A E, et al. Journal of Alloys & Compounds, 2017, 714, 232.
[18] Kalidindi S R. International Journal of Plasticity, 1998, 14(12), 1265.
[19] Allain S, Chateau J P, Dahmoun D, et al. Materials Science & Enginee-ring A, 2004, 387(1), 272.
[20] Kang J, Zhang F C. Materials Science & Engineering A, 2012, 558, 623.
[1] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[2] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[3] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[4] 屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林. 镍基高温合金微孪晶形成机制的研究进展[J]. 材料导报, 2019, 33(23): 3971-3978.
[5] 高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21): 3620-3629.
[6] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[7] 刘春泉,彭其春,薛正良,吴腾. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(15): 2572-2581.
[8] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[9] 高保东, 钟红荣, 吴婷芳, 谭翠, 张岩, 徐水. 丝素/海藻酸钠膜韧性的优化及膜释药机理分析[J]. 《材料导报》期刊社, 2018, 32(7): 1197-1201.
[10] 李洪峰, 曲春艳, 王德志, 刘仲良, 顾继友, 张杨. 短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性[J]. 材料导报, 2018, 32(6): 971-976.
[11] 汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
[12] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[13] 丁雨田,孟斌,高钰璧,高鑫,豆正义,马元俊. 固溶处理对GH3625合金板材组织及性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 243-248.
[14] 胡俊, 王杰, 李兆瑞, 吴德义. 基于随机骨料模型的EPS混凝土粒子尺寸效应分析[J]. 材料导报, 2018, 32(18): 3146-3153.
[15] 薛克敏, 薄冬青, 王薄笑天, 刘梅, 李萍. 7A60铝合金ECAP过程第二相演化行为及机理[J]. 材料导报, 2018, 32(18): 3195-3198.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed