Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 563-568    https://doi.org/10.11896/j.issn.1005-023X.2018.04.011
  材料研究 |
YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究
汪倡1, 庞学佳2, 高宗鸿1, 刘金娜1, 房永超1, 崔秀芳1, 刘二宝1, 金国1
1 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001;
2 中国船舶重工集团公司第七○三研究所,哈尔滨 150078
Wear Resistance of YSZ Fibers Reinforced Al2O3/8YSZ Coatings Prepared by Atmosphere Plasma Spraying
WANG Chang1, PANG Xuejia2, GAO Zonghong1, LIU Jinna1, FANG Yongchao1, CUI Xiufang1, LIU Erbao1, JIN Guo1
1 College of Material Science and Chemical Engineering,Harbin Engineering University, Harbin 150001;
2 The 703 Research Institute of CSIC, Harbin 150078
下载:  全 文 ( PDF ) ( 3081KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将纤维增韧理念应用在等离子喷涂涂层设计中,可提升陶瓷涂层的断裂韧性,解决等离子喷涂陶瓷涂层韧性不足的问题。采用大气等离子喷涂技术制备了添加4%和8%(质量分数)氧化钇稳定氧化锆(YSZ)的YSZ纤维增强Al2O3/8YSZ涂层,对纤维增强涂层的断裂韧性及耐磨性能进行了研究。结果表明:等离子喷涂YSZ纤维增强Al2O3 /8YSZ 陶瓷涂层由α-Al2O3、γ-Al2O3和t'相组成;添加YSZ纤维后,涂层的断裂韧性明显改善,添加8%YSZ纤维复合涂层的KIC达2.924 MPa·m1/2,涂层的显微硬度变化较小;在相同磨损工况下,相比于未添加纤维的涂层,YSZ纤维增强涂层的耐磨性显著提高,其中,添加8%YSZ纤维后复合涂层的耐磨性是未添加涂层的2.5倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪倡
庞学佳
高宗鸿
刘金娜
房永超
崔秀芳
刘二宝
金国
关键词:  大气等离子喷涂  Al2O3/8YSZ涂层  纤维  断裂韧性  耐磨性    
Abstract: The purpose of this work is to apply fiber toughening concept in the design of plasma spraying coatings to improve the fracture toughness, so as to solve the problem of the poor toughness of plasma spraying ceramic coatings. 4wt% and 8wt% yttria stabilized zirconia (YSZ) fibers reinforced Al2O3/8YSZ coatings were prepared by atmosphere plasma spraying method. The effect of fiber reinforced coatings on fracture toughness and wear resistance was studied. The results indicated that the phases of coatings were α-Al2O3, γ-Al2O3 and t'. Fracture toughness of Al2O3/8YSZ coatings added with YSZ fibers were significantly improved, and the KIC of coatings added with 8wt% YSZ fibers was 2.924 MPa·m1/2. The addition of YSZ fibers has little influence on the micro-hardness of coatings. In the same wear condition, the wear loss of coatings added with YSZ fibers was greatly reduced, compared with the coatings without fibers. The wear resistance of coatings added with 8wt% YSZ fibers was 2.5 times of the coatings without fibers.
Key words:  atmosphere plasma spraying    Al2O3/8YSZ coatings    fiber    fracture toughness    wear resistance
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG174.453  
基金资助: 国家自然科学基金(51375106)
通讯作者:  金国:,男,1977年生,教授,博士研究生导师,研究方向为表面工程、增材制造 Tel:(0451)82589660 E-mail:jinguo@hrbeu.edu.cn   
作者简介:  汪倡:男,硕士研究生,研究方向为陶瓷涂层的制备与性能表征 E-mail:wangchang2015@hrbeu.edu.cn
引用本文:    
汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
WANG Chang, PANG Xuejia, GAO Zonghong, LIU Jinna, FANG Yongchao, CUI Xiufang, LIU Erbao, JIN Guo. Wear Resistance of YSZ Fibers Reinforced Al2O3/8YSZ Coatings Prepared by Atmosphere Plasma Spraying. Materials Reports, 2018, 32(4): 563-568.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.011  或          http://www.mater-rep.com/CN/Y2018/V32/I4/563
1 Liu Y, Liu S Y, Wang Y, et al. Nano thermal spraying coating facing the key components in high-side equipment[J].Materials Review,2016,30(S1):67(in Chinese).
刘勇,刘赛月,王铀,等.面向高端装备关键构件的纳米热喷涂涂层[J].材料导报,2016,30(专辑27):67.
2 Rong J, Yang K, Zhao H, et al. Tribological performance of plasma sprayed Al2O3-Y2O3 composite coatings[J].Surface & Coatings Technology,2016,302:487.
3 Guo H J, Jia J H, Zhang Z Y, et al. Reaearch status and prospects of thermal spraying technology[J].Materials Review A:Review Papers,2013,27(2):38(in Chinese).
国洪建,贾均红,张振宇,等.热喷涂技术的研究进展及思考[J].材料导报:综述篇,2013,27(2):38.
4 Fauchais P. Understanding plasma spraying[J].Journal of Physics D Applied Physics,2004,37(9):86.
5 Xu B S, Li C J, Liu S C, et al. Surface engineering and thermal spraying technology and their developments[J].China Surface Engineering,1998(1):3(in Chinese).
徐滨士,李长久,刘世参,等.表面工程与热喷涂技术及其发展[J].中国表面工程,1998(1):3.
6 Dong H L, Li G J, Cui X J. Preparation and development trend of high performance ceramic coatings[J].Materials Review,2008,22(S2):183(in Chinese).
董洪亮,李国军,崔学军.高性能陶瓷涂层的制备技术与发展趋势[J].材料导报,2008,22(专辑Ⅺ):183.
7 Ou X, Deng C G, Wang R C, et al. Advances in wear resistance performance of supersonic atmospheric plasma sprayed coating[J].Materials Review,2013,27(S1):104(in Chinese).
欧献,邓畅光,王日初,等.超音速等离子喷涂涂层耐磨性能研究进展[J].材料导报,2013,27(专辑21):104.
8 Chen L, Yang G J, Li C X, et al. Thermally sprayed ceramic coa-tings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings[J].Advanced Ceramics,2016,37(1):3(in Chinese).
陈林,杨冠军,李成新,等.热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法[J].现代技术陶瓷,2016,37(1):3.
9 Miranda G, Carvalho O, Soares D, et al. Properties assessment of nickel particulate-reinforced aluminum composites produced by hot pressing[J].Journal of Composite Materials,2016,50(4):523.
10 Hong Z, Cheng L, Linjing L U, et al. Internal friction mechanisms and damage evaluation of continuous fiber reinforced ceramic matrix composites[J].Materials Review A:Review Papers,2010,24(12):1(in Chinese).
洪智亮,成来飞,鲁琳静,等.连续纤维增韧陶瓷基复合材料的内耗机制与损伤表征[J].材料导报:综述篇,2010,24(12):1.
11 Yu Y H, Wu W J, You Q, et al. The resrarch of Al2O3/ZrO2/ZrSiO4 ceramic matrix composites[J].Materials Review B:Research Papers,2015,29(4):74(in Chinese).
喻佑华,吴伟杰,尤琪,等.Al2O3/ZrO2/ZrSiO4复合材料的研究[J].材料导报:研究篇,2015,29(2):74.
12 Deng S J, He Y D, Wang P, et al. 8YSZ thermal barrier coating toughened by Pt particles prepared by cathodic plasma electrolysis deposition[J].Transaction Materials and Heat Treatment,2015,36(5):191(in Chinese).
邓舜杰,何业东,王鹏,等.阴极等离子电解大面积沉积弥散Pt微粒增韧8YSZ热障涂层[J].材料热处理学报,2015,36(5):191.
13 Ma X, He Y, Wang D. Preparation and high-temperature properties of Au nano-particles doped α-Al2O3 composite coating on TiAl-based alloy[J].Applied Surface Science,2011,257(23):10273.
14 Jing M X, Shen X Q, Li D H, et al. Effects of coexistence of Ni and ZrO2 inclusions on microstructure and properties of Al2O3 ceramics[J].Journal of the Chinese Ceramic Society,2007,35(1):35(in Chinese).
景茂祥,沈湘黔,李东红,等.ZrO2和Ni复合掺杂对Al2O3陶瓷结构及性能的影响[J].硅酸盐学报,2007,35(1):35.
15 Chen S G, Yin Y S, Zhou C H, et al. Application and study on the mechanism of the phase-stabilized zirconia[J].Journal of the Chinese Ceramic Society,2004,23(3):73(in Chinese).
陈守刚,尹衍升,周春华,等.氧化锆相变稳定机制的研究进展及应用[J].硅酸盐通报,2004,23(3):73.
16 Silvestroni L, Sciti D, Melandri C, et al. Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions[J].Journal of the European Ceramic Society,2010,30(11):2155.
17 Zhou Y, Wang Q, Han X, et al. Fabrication and properties of continuous unidirectional Mo fiber reinforced TiAl composites by slurry casting and vacuum hot pressing[J].Composites Science and Technology,2013,83(83):72.
18 Ma R, Cheng X, Zou J, et al. Toughness and thermal shock of SiC fiber and yttria-stabilized-zirconia composite thick thermal barrier coatings[J].Journal of Inorganic Materials,2016,31(2):190.
19 Dong Y, Wang C, Zhou J. Effect of YSZ fiber addition on microstructure and properties of porous YSZ ceramics[J].Journal of Materials Science,2012,47(17):6326.
20 Lang Y, Dong Y, Zhou J, et al. YSZ fiber-reinforced porous YSZ ceramics with lowered thermal conductivity: Influence of the sintering temperature[J].Materials Science & Engineering A,2014,600(4):76.
21 Ma R, Cheng X, Ye W. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray[J].Applied Surface Science,2015,357:407.
22 Dejang N, Limpichaipanit A, Watcharapasorn A, et al. Fabrication and properties of plasma-sprayed Al2O3/ZrO2 composite coatings[J].Journal of Thermal Spray Technology,2011,20(6):1259.
23 刘瑞堂,刘文博,刘锦云.工程材料力学性能[M].哈尔滨:哈尔滨工业大学出版社,2001:164.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[3] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[4] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[5] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[6] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[7] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[8] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[9] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[10] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[11] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[12] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[13] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[14] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[15] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed