Abstract: To enhance the interfacial adhesion property of basalt fiber to asphalt, the basalt fiber surface was modified using the grafted silane coupling agent KH550. The microscopic characterization of KH550 graft-modified basalt fiber was carried out by scanning electron microscopy and infrared spectroscopy, and the interfacial model of asphalt and BFKH550 was established based on the molecular dynamics method using the ‘chemical grafting' and ‘superposition' approaches. The results show that after KH550 graft modification, the surface of basalt fiber has more bumps and roughness, which increases the adhesion strength between basalt fiber and asphalt. The higher the number of KH550 grafted on the basalt fiber surface, the better the adhesion to the asphalt. The interfacial energy of 20 KH550 grafted on the basalt fiber surface at 25 ℃ increased by 26.1% compared to non-grafted KH550. After KH550 graft modification, the diffusion coefficients of the four components of the asphalt follow the same pattern as without KH550 grafting, being saturated saturate > aromatic > resin > asphaltene, but their overall diffusion coefficients are smaller than without KH550 grafting, indicating that stronger adsorption of KH550 graft-modified basalt fiber to the asphalt has occurred, thus effectively improving the adhesion properties of basalt fiber to the asphalt. The results of the study can provide an important reference for the promotion of basalt fiber in asphalt mixture.
杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
YANG Chengcheng, LIU Li, LIU Zhaohui, HUANG You, LIU Leixin. Study on the Adhesion Characteristics of Silane Coupling Agent Modified Basalt Fiber to Asphalt Based on Molecular Dynamics. Materials Reports, 2024, 38(6): 22110027-7.
1 Zheng J L, Lyu S T, Liu C C. Chinese Science Bulletin, 2020, 65(30), 3219 (in Chinese). 郑健龙, 吕松涛, 刘超超. 科学通报, 2020, 65(30), 3219. 2 Zhang Y J, Luo W B. Materials Reports, 2022, 36(9), 120 (in Chinese). 张永军, 罗文波. 材料导报, 2022, 36(9), 120. 3 Liu L, Liu Z H, Liu J Y. Journal of Materials in Civil Engineering, 2020, 32(4), 04020041. 1. 4 Yang C C, Liu Z H, Liu L, et al. Journal of Highway and Transportation Research and Development, 2020, 37(11), 1 (in Chinese). 杨程程, 刘朝晖, 柳力, 等. 公路交通科技,2020, 37(11), 1. 5 Lou K K, Xiao P, Tang Q, et al. Construction and Building Materials, 2022, 318, 126048. 6 Miao Y H, Wang T, Wang L B. Polymers, 2019, 11(3), 542. 7 Liu L, Liu Z H. Performance study of basalt fiber-reinforced rubber asphalt mixture, China Communication Press, China, 2018(in Chinese). 柳力, 刘朝晖. 玄武岩纤维橡胶沥青混合料性能增强机理与方法, 人民交通出版社, 2018. 8 Zhang J Z, Wang J, Li Y, et al. Materials Reports, 2022, 36(16), 21 (in Chinese). 张吉哲, 王静, 李岩, 等. 材料导报, 2022, 36(16), 21. 9 Zhao X G, Ouyang J, Yang H M, et al. Minerals, 2020, 10(6), 490. 10 Zeng Y, Yu K J, Qian K. Journal of Materials Science and Engineering, 2019, 37(4), 612 (in Chinese). 曾瑶, 俞科静, 钱坤. 材料科学与工程学报, 2019, 37(4), 612. 11 Liu L, Huang Y, Liu Z H. Advances in Civil Engineering, 2020, 2020(4), 1. 12 Kou C J, Chen Z K, Kang A H, et al. Construction And Building Mate-rials, 2022, 323, 126626. 13 Manikandan V, Jappes J T W, Kumar S M S, et al. Composite Part B: Engineering, 2012, 43(2), 812. 14 Siwon Y, Kyung H O, Soon H H. Composites Science and Technology, 2019, 182(29), 1. 15 Antonova M V, Krasina I V, Ilyushina S V. Journal of Physics, 2018(1058), 1. 16 Li L, Liu Z H, Liu L, et al. Acta Materiae Compositae Sinica, 2018, 35(8), 2191 (in Chinese). 李理, 刘朝晖, 柳力, 等. 复合材料学报, 2018, 35(8), 2191. 17 Li W B, Liu L, Liu Z H, et al. Materials Reports, 2022, 36(11), 126 (in Chinese). 李文博, 柳力, 刘朝晖, 等. 材料导报, 2022, 36(11), 126. 18 Geunsung L, Minchang S, Ji H Y, et al. Composite Structures, 2019, 220, 580. 19 Shavandi A, Ali M A. Progress in Organic Coatings, 2019, 130, 182. 20 Bie Y N, Zhu S R, He P, et al. Acta Materiae Compositae Sinica, 2021, 39(8), 1 (in Chinese). 别依诺, 朱四荣, 贺攀, 等. 复合材料学报, 2021, 39(8), 1. 21 Zhou S F, Gao J J, Wang J J, et al. Materials Research Express, 2019, 6, 1. 22 Chen J N, Zhao S P, Hu W H, et al. Science of Advanced Materials, 2019, 11(9), 1340. 23 Liu L, Liu Z H, Xiang Y, et al. Journal of Building Materials, 2017, 20(4), 623(in Chinese). 柳力, 刘朝晖, 向宇, 等. 建筑材料学报, 2017, 20(4), 623. 24 Zhang S C, Zhong T H Y, Xu Q B, et al. Polymer Materials Science & Engineering, 2022, 38(2), 88(in Chinese). 张圣昌, 钟天皓月, 许启彬, 等. 高分子材料科学与工程, 2022, 38(2), 88. 25 Speight J G. The chemistry and technology of petroleum (4th edition), CRC Press, America, 2007, pp. 945. 26 Cao L P, Zhang X K, Yang C, et al. Journal of Central South University (Science and Technology), 2021, 52(7), 2276 (in Chinese). 曹丽萍, 张晓亢, 杨晨, 等. 中南大学学报(自然科学版), 2021, 52(7), 2276. 27 Yao H, Lin J F, Xu M, et al. Advances in Colloid and Interface Science, 2022, 299, 102565. 28 Li Q, Hu K, Yu C H, et al. Materials Reports, 2023, 37(5), 268 (in Chinese). 栗启, 胡魁, 俞才华, 等. 材料导报, 2023, 37(5), 268. 29 Chen X F, Zhang Y S, Huo H B, et al. Journal of Natural Fibers, 2020, 17(2), 214. 30 Xu P. Modeling and analysis of molecular dynamics for characterizing asphalt-aggregate interaction. Master's Thesis, Chang'an University, China, 2013(in Chinese). 徐霈. 基于分子动力学的沥青与集料界面行为虚拟实验研究. 硕士学位论文,长安大学, 2013. 31 Guo M. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate. Ph.D. Thesis, Harbin Institute of Technology, China, 2017 (in Chinese). 郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究.博士学位论文, 哈尔滨工业大学, 2017. 32 He L, Li G N, Lv S T, et al. Construction and Building Materials, 2020, 254(10), 119225. 33 Liao R J, Zhu M Z, Zhou X, et al. Acta Physico-Chimica Sinica, 2011, 27(4), 815 (in Chinese). 廖瑞金, 朱孟兆, 周欣, 等. 物理化学学报, 2011, 27(4), 815. 34 Norinaga K, Wargardalam V J, Takasugi S, et al. Energy & Fuels, 2001, 15(5), 1317. 35 Andrews A B, Guerra R E, Mullins O C, et al. The Journal of Physical Chemistry A, 2006, 110(26), 8093. 36 Mousavi M, Fini E. ACS Sustainable Chemistry & Engineering, 2020, 8(8), 3231.