Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23040134-11    https://doi.org/10.11896/cldb.23040134
  金属与金属基复合材料 |
NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究
崔晔晖1, 赵昂2, 曾祥国1,*
1 四川大学建筑与环境学院,深地科学与工程教育部重点实验室,成都 610065
2 同济大学航空航天与力学学院,上海 200092
Molecular Dynamic Studies of Micro-voids Evolution Behavior Under Ultra Impact Loading for NiTi alloy
CUI Yehui1, ZHAO Ang2, ZENG Xiangguo1,*
1 College of Architecture and Environment, Ministry of Education Key Laboratory of Deep Earth Science and Engineering, Sichuan University, Chengdu 610065, China
2 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 19312KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用分子动力学模型研究了多晶NiTi合金在强冲击载荷作用下微孔洞的演化行为。为定量确定材料内部的孔洞体积分数,在后处理中采用PYTHON代码编程来统计孔洞体积。分子动力学的模拟结果很好地揭示了NiTi合金在不同冲击速度、冲击持时和晶粒尺寸下的孔洞演化机制和微观损伤机理。结果表明冲击速度的增大会导致冲击熔化效应,从而显著增加孔洞体积分数,并促使损伤行为从经典层裂向微层裂转变。在经典层裂中,冲击持时的增加不会影响孔洞的演化速率,但会延迟初始损伤时刻并使孔洞分布更靠近加载边界。而在微层裂行为下,缩短冲击持时将使损伤行为从微层裂退化为经典层裂,并降低孔洞的体积分数。此外,在数值模型中还研究了晶粒尺寸对孔洞演化的影响。在经典层裂情况下,由于晶粒间相互作用对孔洞生长的抑制作用,随着晶粒尺寸的减小,孔洞体积的增长速率会受到抑制。然而,当冲击速度增大到3 km/s时,冲击熔化行为会弱化晶粒尺寸的强化效果。在本工作中,分子动力学模拟对NiTi合金在不同参数下的损伤演化过程进行了很好的微观表征并揭示了相应的微观机理,其相应的数值结果可以为NiTi合金抗冲击结构设计提供理论参考,并为NiTi合金的制备优化提供了数值依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔晔晖
赵昂
曾祥国
关键词:  NiTi合金  孔洞演化  分子动力学  冲击荷载    
Abstract: In this work, the molecular dynamic model of nanocrystalline NiTi was applied to explore the micro-voids evolution process under intensive impact loading. To determine the voids volume fraction inside the materials, a PYTHON code was conducted to measure voids volume during the post-process for simulation results. The voids evolution process and the micro damage mechanism of NiTi alloy were well revealed by the molecular dynamic simulation under the different parameters including impact velocity, duration time, and grain sizes. It was found that the increasing of impact velocity would promote the growth of the voids volume significantly and the transformation of damage behavior from classical spallation to micro spallation. Under the classical spallation behavior, the increasing of the impact duration time would not affect the growth rate of voids. However, it will delay the damage initial time and make the voids distribution closer to the loading boundary. Meanwhile, the simulation results also proved that the reduction of the impact duration time would make the damage behavior degenerate from the micro spallation to classical spal-lation and decrease the volume fraction of voids. Finally, the grain size effect on voids evolution was also considered in the numerical model. Under the classical spallation situation, it was discovered that the voids increasing rate would be hindered with the reduction of the grain size due to the inhibiting effect of voids growth provided by grains interaction. However, when the impact velocity increased to 3 km/s, the grain size strengthening effect would be weakened by the impact melting behavior. In this work, molecular dynamics simulation gave the microscopic description of the NiTi damage evolution process under different parameters and revealed the corresponding microscopic mechanism. The numerical results could be used for the preparation optimization of NiTi alloy and provide theoretical reference for the design of NiTi structure.
Key words:  NiTi alloy    voids evolution    molecular dynamics    impact loading
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  O385  
基金资助: 国家自然科学基金委员会-中国工程物理研究院联合基金(U1430119; U1530140)
通讯作者:  * 曾祥国,四川大学建筑与环境学院博士研究生导师、土木工程博士研究生导师;四川大学建筑与环境学院教授委员会副主任。四川省力学学会常务理事。1984年毕业于重庆大学机械工程系,1987年与1996年分别在重庆大学工程力学系获得硕士和博士学位。2002年至2004年在美国Alfred大学做博士后科研工作。研究工作包括多尺度材料力学,结构完整性评价、冲击动力学、抗腐蚀材料、蠕变与松弛力学的研究。发表论文60余篇,包括Mechanics of Materials,Journal of Alloys and Compounds,International Journal of Hydrogen Energy等。xiangguozeng@scu.edu.cn   
作者简介:  崔晔晖,2016年6月、2019年6月于四川大学获得工学学士学位和硕士学位。现为四川大学博士研究生,在曾祥国教授的指导下进行研究。目前主要研究领域为材料的多尺度计算模拟。
引用本文:    
崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
CUI Yehui, ZHAO Ang, ZENG Xiangguo. Molecular Dynamic Studies of Micro-voids Evolution Behavior Under Ultra Impact Loading for NiTi alloy. Materials Reports, 2024, 38(15): 23040134-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040134  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23040134
1 Wang Y, Aslani F, Valizadeh A. Construction and Building Materials, 2020, 259, 119765.
2 Mao H, Yang H L, Shi X B. Materials Reports, 2019, 33(7), 2237 (in Chinese).
毛虎, 杨宏亮, 史晓斌. 材料导报, 2019, 33(7), 2237
3 Feng D H, Lu Y. Journal of Chongqing Technology and Business University ( Natural Science Edition), 2024, 41(3), 58 (in Chinese).
冯栋辉, 卢艳. 重庆工商大学学报( 自然科学版), 2024, 41(3), 58.
4 Wang J, Ren X, Xu Y, et al. International Journal of Impact Engineering, 2020, 139, 103532.
5 Huang H, Durand B, Sun Q P et al. International Journal of Impact Engineering, 2017, 108, 402.
6 Han T, Zeng X, Chen H, et al. Rare Metal Materials and Engineering, 2017, 46(S1), 45 (in Chinese).
韩悌信, 曾祥国, 陈华燕, 等. 稀有金属材料与工程, 2017, 46 (S1), 45.
7 Peng H, Li P, Pei X Y, et al. Acta Physica Sinica, 2013, 62(22), 226201 (in Chinese).
彭辉, 李平, 裴晓阳, 等. 物理学报, 2013, 62(22), 226201.
8 Peng H, Pei X Y, Li P, et al. Acta Physica Sinica, 2015, 64(21), 216201 (in Chinese).
彭辉, 裴晓阳, 李平, 等. 物理学报, 2015, 64(21), 216201.
9 Xin J T, Gu Y Q, Li P, et al. Acta Physica Sinica, 2012, 61(23), 236201(in Chinese).
辛建婷, 谷渝秋, 李平, 等. 物理学报, 2012, 61(23), 236201.
10 Wang X, Xia W, Wu X, et al. Materials Science and Engineering A, 2013, 578, 1.
11 Wang X, Xia W, Wu X, et al. Mechanics of Materials, 2017, 114, 69.
12 Zhang X, Wang G, Luo B, et al. Journal of Alloys and Compounds, 2018, 731, 569.
13 Diwu M J, Hu X M. Acta Physica Sinica, 2020, 69(11), 116202 (in Chinese).
第伍旻杰, 胡晓棉. 物理学报, 2020, 69(11), 116202.
14 Zhang Q, Li S, Zhang B, et al. Acta Metallurgica Sinica, 2019, 55(7), 919 (in Chinese).
张清东, 李硕, 张勃洋, 等. 金属学报, 2019, 55(7), 919.
15 Sheng Y, Jia B, Wang R H, et al. Acta Metallurgica Sinica, 2020, 56(8), 1144 (in Chinese).
盛鹰, 贾彬, 王汝恒, 等. 金属学报, 2020, 56(8), 1144.
16 Wang H Z, Xue C, Yang Q H, et al. Rare Metal Materials and Engineering, 2021, 50(4), 1391 (in Chinese).
王环珠, 薛春, 杨千华, 等. 稀有金属材料与工程, 2021, 50(4), 1391.
17 Zhu Y, Zhang Y, Qi S, et al. Rare Metal Materials and Engineering, 2016, 45, 897.
18 Chen K G, Zhu W J, Ma W, et al. Acta Physica Sinica, 2010, 59(2), 1225 (in Chinese).
陈开果, 祝文军, 马文, 等. 物理学报, 2010, 59(2), 1225.
19 Li W, Hahn E N, Yao X, et al. Acta Materialia, 2020, 200, 632.
20 Li W, Hahn E N, Yao X, et al. Acta Materialia, 2019, 167, 51.
21 Liao Y, Xiang M, Li G, et al. Mechanics of Materials, 2018, 126, 13.
22 Xiong Q L, Kitamura T, Li Z. Mechanics of Materials, 2019, 138, 103167.
23 Tian X, Cui J, Ma K, et al. International Journal of Heat and Mass Transfer, 2020, 158, 120013.
24 Xiang M, Liao Y, Wang K, et al. International Journal of Plasticity, 2018, 103, 23.
25 Wang B, Kang G, Yu C, et al. International Journal of Mechanical Sciences, 2021, 211, 106777.
26 Wang F, He L, Zeng X, et al. Journal of Material Science and Technology, 2021, 77, 90.
27 Ko W S, Maisel S B, Grabowski B, et al. Acta Materialia, 2017, 123, 90.
28 Wang B, Kang G, Wu W, et al. International Journal of Plasticity, 2020, 125, 374.
29 Chowdhury P, Patriarca L, Ren G et al. International Journal of Plasticity, 2016, 81, 152.
30 Jiang D, Xiao Y. International Journal of Solids and Structures, 2021, 210-211, 170.
31 Nie K, Li M P, Wu W P, et al. International Journal of Solids and Structures, 2021, 221, 31.
32 Yu C, Kang G, Kan Q. International Journal of Plasticity, 2018, 105, 99.
33 Zhang Y, Jiang S, Wang M. International Journal of Plasticity, 2020, 125, 27.
34 Li G, Wang Y, Xiang M, et al. International Journal of Mechanical Sciences, 2018, 141, 143.
35 He L, Wang F, Zeng X, et al. Mechanics of Materials, 2020, 143, 103343.
36 Wang X X, He A M, Zhou T T, et al. Mechanics of Materials, 2021, 160, 103991.
37 Kavousi S, Novak B R, Baskes M I, et al. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 015006.
38 Lee B J, Baskes M I. Physics Review Letter B, 2000, 62, 8564.
39 Ko W S, Grabowski B, Neugebauer J. Physics Review Letter B, 2015, 92, 1.
40 Reed E J, Fried L E, Joannopoulos J D. Physics Review Letter, 2003, 90, 4.
41 Yang X, Zeng X, Chen H, et al. Journal of Alloys and Compounds, 2019, 808, 151702.
42 Millett J C F, Bourne N K. Materials Science and Engineering A, 2004, 378, 138.
43 Zeng Z Y, Hu C E, Cai L C, et al. Physics Review Letter B, 2010, 405, 3665.
44 Cui Y, Zeng X, Xiao J. Journal of Applied Physics, 2022, 131, 174301
45 Qi Z, He L, Wang F, Wang J, et al. Mechanics of Materials, 2022, 165, 104185.
46 Thompson A P, Plimpton S J, Mattson W. Journal of Chemical Physics, 2009, 13, 154107.
47 Xiang M, Hu H, Chen J, et al. Journal of Applied Physics, 2013, 114, 144312.
48 Xiang M, Hu H, Chen J. Journal of Applied Physics, 2013, 113, 123509.
49 Dozhdikov V S, Basharin A Y, Levashov P R. Journal of Chemical Physics, 2012, 137, 054502.
[1] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[2] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[3] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[4] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[5] 朱雅婧, 徐光霁, 马涛, 范剑伟, 胡靖. 基于有限元和分子模拟的热再生沥青激活行为研究[J]. 材料导报, 2024, 38(13): 22040306-7.
[6] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[7] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[8] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[9] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[10] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[11] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[12] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[13] 徐宁,汪海年, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 21110097-8.
[14] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[15] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed