Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21080280-6    https://doi.org/10.11896/cldb.21080280
  金属与金属基复合材料 |
片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟
张隽1,2, 冯瑞成1,2,*, 姚永军1,2, 杨晟泽1,2, 曹卉1,2, 付蓉1,2, 李海燕1,2
1 兰州理工大学机电工程学院,兰州 730050
2 兰州理工大学数字制造技术与应用省部共建教育部重点实验室,兰州 730050
Atomic Simulation of Tensile Behavior of γ/γ Interface System in Lamellar TiAl-Nb Alloy
ZHANG Jun1,2, FENG Ruicheng1,2,*, YAO Yongjun1,2, YANG Shengze1,2, CAO Hui1,2, FU Rong1,2, LI Haiyan1,2
1 School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laboratory of Digital Manufacturing Technology and Application, the Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 18766KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全片层组织结构的TiAl基合金在发生塑性变形时,因具有多个可阻碍位错迁移的界面,增加了位错迁移所需要的应变能,从而使变形能力和强度强烈依赖于这种显微组织中的层状界面。本工作采用分子动力学方法研究了单轴拉伸载荷下具有γ/γ界面的TiAl-Nb合金的变形行为。从原子尺度上讨论了真孪晶(True-twin, TT)、旋转界面(Rotational boundary, RB)、伪孪晶(Pseudo-twin, PT)三种不同界面下,片层状TiAl-Nb合金的力学响应、位错演化和断裂机制;阐述了材料力学响应与微观缺陷演化之间的关系,表明含不同界面的TiAl-Nb合金力学性能具有显著的层状边界效应。通过观察位错与界面的交互作用发现位错与界面相遇后,三个界面及附近都会产生无序原子区;而RB/PT试样中无序原子区作为位错源会向另一片层发射位错,TT试样中的无序原子区不会作为位错源向另一片层发射位错。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张隽
冯瑞成
姚永军
杨晟泽
曹卉
付蓉
李海燕
关键词:  TiAl-Nb合金  界面  位错  变形行为  分子动力学    
Abstract: During the plastic deformation of TiAl based alloy with fully lamellar structure, the strain energy required by dislocation movement will be increased due to the existence of multiple interfaces which can hinder dislocation migration. Therefore, the deformation ability and strength are strongly dependent on the lamellar interface in the microstructure. In this work, the deformation behavior of TiAl-Nb alloy with γ/γ interface under uniaxial tensile loading has been studied by the molecular dynamics method. The mechanical response, dislocation evolution and fracture mechanism of lamellar TiAl-Nb alloy under TT (true-twin), RB (rotational boundary) and PT (pseudo-twin) have been discussed on the atomic scale. The relationship between mechanical response and microstructure evolution of TiAl-Nb alloys was described. It is shown that the mechanical pro-perties of TiAl-Nb alloys with different interfaces have a significant layered boundary effect. By observing the interaction between the dislocation and the interface, it is found that after the encounter of the dislocation and the interface, disordered atomic regions can be generated in and around the three interfaces. However, the disordered atomic region in RB/PT sample, as the source of dislocation, will emit the dislocation to another layer, while the disordered atomic region in TT sample will not act as the source of dislocation to another layer.
Key words:  TiAl-Nb alloy    interface    dislocation    deformation behavior    molecular dynamics
发布日期:  2023-03-27
ZTFLH:  TG146  
基金资助: 国家自然科学基金(52065036);甘肃省自然科学基金(20JR5RA448);兰州理工大学红柳一流学科建设项目
通讯作者:  *冯瑞成,兰州理工大学机电工程学院教授、博士研究生导师。2004年兰州理工大学机械制造及其自动化专业硕士毕业后到兰州理工大学工作至今,2015年兰州理工大学机械制造及其自动化专业博士毕业。目前主要从事结构与材料强度、加工表面完整性等方面的研究工作。发表学术论文60余篇。postfeng@lut.edu.cn   
作者简介:  张隽,2018年6月毕业于兰州理工大学获得工学学士学位。现为兰州理工大学机电工程学院硕士研究生,在冯瑞成教授的指导下进行研究。目前主要研究领域为结构与材料强度。
引用本文:    
张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
ZHANG Jun, FENG Ruicheng, YAO Yongjun, YANG Shengze, CAO Hui, FU Rong, LI Haiyan. Atomic Simulation of Tensile Behavior of γ/γ Interface System in Lamellar TiAl-Nb Alloy. Materials Reports, 2023, 37(6): 21080280-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080280  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21080280
1 Imayev V, Oleneva T, Imayev R, et al. Intermetallics, 2012, 26, 91.
2 Gerling R, Schimansky F P, Stark A, et al. Intermetallics, 2008, 16(5), 689.
3 Nochovnaya N A, Panin P V, Kochetkov A S, et al. Metal Science and Heat Treatment, 2014, 56(7), 364.
4 Mayer S, Erdely P, Fischer F D, et al. Advanced Engineering Materials, 2017, 19(4), 160735.
5 Zhu H, Wei T, Carr D, et al. JOM, 2012, 64(12), 1418.
6 Bewlay B P, Nag S, Suzuki A, et al. Materials at High Temperatures, 2016, 33(4), 549.
7 Appel F, Paul J D H, Oehring M. Gamma titanium aluminide alloys: science and technology, Wiley Online Library, Germany, 2011, pp. 301.
8 Kim Y W, Dimiduk D M. JOM, 1991, 43(8), 40.
9 Liu Y J, Jiang X Q, She X W, et al. Materials Reports, 2020, 34(10), 10132 (in Chinese).
刘玉洁, 蒋显全, 佘欣未, 等. 材料导报, 2020, 34(10), 10132.
10 Elkhateeb M G, Shin Y C. Materials & Design, 2018, 155, 161.
11 Cao X P, Zhang S L, Zhang C J, et al. Rare Metal Materials and Engineering, 2020, 49(7), 2346 (in Chinese).
曹小平, 张树玲, 张长江, 等. 稀有金属材料与工程, 2020, 49(7), 2346.
12 Gao Z T, Hu R, Wu Y L, et al. Rare Metal Materials and Engineering, 2019, 48(9), 3071 (in Chinese).
高子彤, 胡锐, 吴与伦, 等. 稀有金属材料与工程, 2019, 48(9), 3071.
13 Clemens H, Mayer S. Advanced Engineering Materials, 2013, 15(4), 191.
14 Chan K S, Kim Y W. Acta Metallurgica et Materialia, 1995, 43(2), 439.
15 Burtscher M, Klein T, Mayer S, et al. Intermetallics, 2019, 114, 106611.
16 Mine Y, Takashima K, Bowen P. Materials Science & Engineering: A, 2012, 532, 13.
17 Li J H, Zhang C, Feng R C, et al. Rare Metal Materials and Engineering, 2021, 50(5), 1617.
18 Schnabel J E, Scheider I. Frontiers in Materials, 2020, 7, 347.
19 Kanani M, Hartmaier A, Janisch R. Acta Materialia, 2016, 106, 208.
20 Ganesan H, Scheider I, Cyron C J. Frontiers in Materials, 2021, 7, 382.
21 Li W, Yin Y, Xu Q, et al. Computational Materials Science, 2019, 159, 397.
22 Li W, Yu W, Xu Q, et al. Computational Materials Science, 2020, 172, 109361.
23 Chauniyal A, Janisch R. Materials Science and Engineering: A, 2020, 796, 140053.
24 Dimiduk D M. Materials Science and Engineering: A, 1999, 263(2), 281.
25 Dey S R, Bouzy E, Hazotte A. Acta Materialia, 2008, 56(9), 2051.
26 Kesler M S, Goyel S, Ebrahimi F, et al. Journal of Alloys and Compounds, 2017, 695, 2672.
27 Bibhanshu N, Bhattacharjee A, Suwas S. Journal of Alloys and Compounds, 2020, 832, 154584.
28 Hayes R W, London B. Acta Metallurgica et Materialia, 1992, 40(9), 2167.
29 Xu X J, Xu L H, Lin J P, et al. Intermetallics, 2005, 13(3-4), 337.
30 Yan Y Q, Zhou L, Wang W S, et al. Journal of Alloys and Compounds, 2003, 361(1-2), 241.
31 Kou P P, Feng R C, Li H Y, et al. Materials Reports B:Research Papers, 2020, 34(7), 14140 (in Chinese).
寇佩佩, 冯瑞成, 李海燕, 等. 材料导报:研究篇, 2020, 34(7), 14140.
32 Li Y F, Xu H, Song Z, et al. Journal of Central South University of Technology, 2010, 17(4), 674.
33 Tian S, Lv X, Yu H, et al. Materials Science and Engineering: A, 2016, 651, 490.
34 Lin L, Li B S, Zhu G M, et al. International Journal of Minerals Metallurgy and Materials, 2018, 25(10), 1181.
35 Tan J, Sinno T R, Diamond S L. Journal of Computational Science, 2018, 25, 89.
36 Farkas D, Jones C. Modelling and Simulation in Materials Science and Engineering, 1996, 4(1), 23.
37 Stukowski A. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1), 015012.
38 Sutton A P, Balluffi R W. 叶飞, 顾新福, 邱东, 等, 译. 晶体材料中的界面, 高等教育出版社, 2016, pp. 761.
39 Qu S, Zhou H, Huang Z. Scripta Materialia, 2011, 65(8), 715.
40 Hull D, Bacon D J. Introduction to dislocations (5th Edition), Elsevier, Netherlands, 2011, pp. 48.
[1] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[2] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[3] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[4] 张忠科, 蒋常铭, 李轩柏, 熊建强, 童辉. 汽车用铝钢无匙孔搅拌摩擦点焊接头组织及界面特征研究[J]. 材料导报, 2023, 37(5): 21070281-6.
[5] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[6] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[7] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[8] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[9] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[10] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[11] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[12] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[13] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[14] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[15] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed