Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21050249-6    https://doi.org/10.11896/cldb.21050249
  金属与金属基复合材料 |
石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究
白清顺*, 郭万民, 窦昱昊, 郭永博, 张飞虎
哈尔滨工业大学机电工程学院,哈尔滨 150001
Molecular Dynamics Simulation of the Surface Adhesion Behavior Between Graphene and Stainless Steel Microstructures
BAI Qingshun*, GUO Wanmin, DOU Yuhao, GUO Yongbo, ZHANG Feihu
School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 7290KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯和不锈钢的黏附结合对石墨烯在不锈钢材料表面的应用有着重要的意义。不锈钢表面形貌会影响石墨烯的黏附行为,合理的微结构形貌和参数有利于石墨烯的黏附,提升不锈钢表面石墨烯的综合性能。本工作建立了矩形、波纹、半圆以及尖峰截面微结构不锈钢的分子动力学仿真模型,探究了微结构与石墨烯之间的黏附能以及竖直作用力,揭示了石墨烯在不锈钢表面的黏附机理。研究表明:石墨烯的黏附状态受微结构形貌和参数的影响。在仿真中微结构表面石墨烯处于完全黏附状态时,黏附能均达到最大值;在矩形和波纹截面微结构中,通过调节参数可以实现不同的石墨烯黏附状态;竖直作用力受到微结构形貌的影响显著,相同微结构形貌下不同黏附状态的石墨烯的竖直作用力相差很小;竖直作用力对石墨烯的约束贡献很小,水平作用力是保持石墨烯稳定黏附的主要因素。研究结果可为石墨烯在不锈钢表面的黏附应用提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白清顺
郭万民
窦昱昊
郭永博
张飞虎
关键词:  石墨烯  不锈钢  微结构  黏附  分子动力学模拟    
Abstract: The adhesion combination of graphene and stainless steel is of great significance to the application of stainless steel materials. The surface morphology of stainless steel may affect the adhesion behavior of graphene. Reasonable microstructure morphology and parameters are conducive to the adsorption of graphene and enhance the overall performance of graphene on stainless steel surfaces. The molecular dynamics (MD) simulation model of rectangular, corrugated, semi-circular and peak cross-section microstructure stainless steel is established in this work. With the MD simulation, the adsorption energy and force between the microstructure and graphene are explored and the adhesion mechanism of graphene on the surface of stainless steel is also revealed. Studies have also shown that the adhesion state of graphene is affected by the microstructure morphology and parameters. In the simulation, the adhesion energy reaches the maximum value when the graphene has fully adhered to the microstructure surface. In the rectangular and corrugated cross-section microstructures, different graphene adhesion states can be achieved by parameter adjustment. It is shown that the normal force is significantly affected by the microstructure morphology. Under the condition of the same microstructure morphology, the normal force of graphene in various adsorption states has little difference. The normal force contri-butes little to the constraint of graphene and the horizontal force is the main factor to maintain the stable adsorption of graphene. The research results can provide theoretical guidance for the adhesion application of graphene on the surface of stainless steel.
Key words:  graphene    stainless steel    microstructure    adhesion    molecular dynamics simulation
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TQ127.1  
基金资助: 国家自然科学基金(51775146;52075129;51535003)
通讯作者:  * 白清顺,哈尔滨工业大学教授、博士研究生导师。1998年毕业于哈尔滨工业大学机械工程系, 获工学学士学位;2000年毕业于哈尔滨工业大学机械制造及其自动化学科, 获工学硕士学位,2004年毕业于哈尔滨工业大学机械制造及其自动化学科, 获工学博士学位,毕业后留校任教。以第一作者在国内外学术期刊上发表论文60余篇,国家发明专利授权15余项。主要研究方向为超精密加工与微纳制造、超洁净制造理论与技术、精密机械设计与制造。qshbai@hit.edu.cn   
引用本文:    
白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
BAI Qingshun, GUO Wanmin, DOU Yuhao, GUO Yongbo, ZHANG Feihu. Molecular Dynamics Simulation of the Surface Adhesion Behavior Between Graphene and Stainless Steel Microstructures. Materials Reports, 2023, 37(1): 21050249-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050249  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21050249
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
2 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology, 2010, 5(8), 574.
3 El-Kady M F, Strong V, Dubin S, et al. Science, 2012, 335(6074), 1326.
4 Kim K S, Zhao Y, Jang H, et al. Nature, 2009, 457(7230), 706.
5 Kobayashi T, Bando M, Kimura N, et al. Applied Physics Letters, 2013, 102(2), 23112.
6 Li X S, Cai W W, An J, et al. Science, 2009, 324(5932), 1312.
7 Li X S, Cai W W, Colombo L, et al. Nano Letters, 2009, 9(12), 4268.
8 Wehling T O, Katsnelson M I, Lichtenstein A I. Physical Review B, 2009, 80(8), 085428.
9 Wintterlin J, Bocquet M L. Surface Science, 2009, 603(10-12), 1841.
10 Zhou S Y, Gweon G H, Fedorov A V, et al. Nature Materials, 2007, 6(11), 916.
11 Meyer J C, Geim A K, Katsnelson M I, et al. Nature, 2007, 446(7131), 60.
12 Lui C H, Liu L, Mak K F, et al. Nature, 2009, 462(7271), 339.
13 Yoon T, Shin W C, Kim T Y, et al. Nano Letters, 2012, 12(3), 1448.
14 Zhang Z, Li T. Journal of Applied Physics, 2011, 110(8), 83526.
15 Zong Z, Chen C L, Dokmeci M R, et al. Journal of Applied Physics, 2010, 107(2), 26104.
16 Torres J, Zhu Y, Liu P, et al. Physica Status Solidi(a), 2018, 215(1), 1700512.
17 Gao X Y, Yu X Y, Li B X, et al. Advanced Materials Interfaces, 2017, 4(9), 1601023.
18 Jiang T, Zhu Y. Nanoscale, 2015, 7(24), 10760.
19 Bai Q S, Shen R Q, He X, et al. Acta Physica Sinica, 2018, 67(3), 030201(in Chinese).
白清顺, 沈荣琦, 何欣, 等. 物理学报, 2018, 67(3), 030201.
20 Baddoo N R. Journal of Constructional Steel Research, 2008, 64(11), 1199.
21 Berman D, Erdemir A, Sumant A V. Carbon, 2013, 59, 167.
22 Guo W M, Bai Q S, Dou Y H, et al. Surface Technology, 2021, 50(4), 43(in Chinese).
郭万民, 白清顺, 窦昱昊, 等. 表面技术, 2021, 50(4), 43.
23 Bunch J S, Dunn M L. Solid State Communications, 2012, 152(15), 1359.
24 Guo X M, Qing F Z, Li X S. Acta Physica Sinica, 2021, 70(9), 7(in Chinese).
郭晓蒙, 青芳竹, 李雪松. 物理学报, 2021, 70(9), 7.
25 Wang W D, Li L L, Yang C G, et al. Acta Physica Sinica, 2016, 65(16), 160201(in Chinese).
王卫东, 李龙龙, 杨晨光, 等. 物理学报, 2016, 65(16), 160201.
26 Zhou X W, Foster M E, Sills R B. Journal of Computational Chemistry, 2018, 39(29), 2420.
27 Brenner D W. Physica Status Solidi(b), 2000, 217(1), 23.
28 Wang P, Cao Q, Yan Y, et al. Nanomaterials, 2019, 9(1), 59.
29 Dabaghmanesh S, Neek-Amal M, Partoens B, et al. Chemical Physics Letters, 2017, 687, 188.
30 Ptak F, Almeida C M, Prioli R. Scientific Reports, 2019, 9(1), 14555.
[1] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[2] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[3] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[4] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[5] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[6] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[7] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[8] 何翠竹. 控制棒驱动机构耐压壳钩爪段用马氏体不锈钢研究[J]. 材料导报, 2022, 36(Z1): 22040180-4.
[9] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[10] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[11] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[12] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[13] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[14] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[15] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed