Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20060137-7    https://doi.org/10.11896/cldb.20060137
  金属与金属基复合材料 |
海洋工程高抗蚀筋材研究进展
秦芳诚1, 亓海全1, 孟征兵1, 陈平1, 黄玉鸿2
1 桂林理工大学材料科学与工程学院,广西 桂林 541004
2 广西盛隆冶金有限公司,广西 防城港 538004
Advances in High Corrosion Resistant Rebar for Ocean Engineering
QIN Fangcheng1, QI Haiquan1, MENG Zhengbing1, CHEN Ping1, HUANG Yuhong2
1 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
2 Guangxi Shenglong Metallurgical Co.,Ltd., Fangchenggang 538004, Guangxi, China
下载:  全 文 ( PDF ) ( 10152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着国家海洋强国建设和“向海经济”发展战略的实施,北部湾、南海区域和东盟沿海重大海洋工程建设进入高速发展阶段。海工钢筋混凝土作为海洋建设的重要基础材料,在近海岸港口码头、跨海桥梁、海底隧道、人工岛屿以及海上钻井平台等领域已有广泛应用,为海工筋材的开发提供了极大的市场推动力。
由于处于高温、高湿、高盐雾等复杂的海洋环境,海工筋材普遍存在锈蚀、涂料脱落、开裂以及功能性快速失效等突出问题,其耐蚀性直接关系到混凝土和海洋工程结构的耐久性与服役寿命,以上问题对传统海洋工程材料也提出了新挑战。因此,迫切需要开展提高海工筋材耐蚀性的研究。近年来国内外学者在海工钢筋锈蚀行为和结构耐久性方面开展了大量有益研究,取得了丰硕成果。普通低碳钢筋以大面积整体均匀腐蚀为主,耐蚀能力有限,会降低钢筋握裹力,诱发混凝土结构锈胀开裂和剥落;不锈钢筋临界Cl-浓度高,以局部点蚀为主,锈蚀速率低,但Cr、Ni总含量高达20%,前期成本较高;涂/镀层钢筋可以防止混凝土及其外围环境中侵蚀介质对钢筋的锈蚀,但随着混凝土强度提高和保护层厚度加大,开裂倾向也增加;低合金化钢筋的耐Cl-腐蚀能力较强,具有双层钝化膜结构,Cr和Ni增大了其钝化区间,锈层稳定性高,其腐蚀速率远低于普通低碳钢筋。因此,具有高抗蚀性的合金化海工筋材在向海港口码头、跨海大桥等重大工程中的应用不断加大。
本文综述了海洋工程用钢筋材料的研究进展,从钢筋特点、组织结构、耐蚀行为与性能以及耐蚀机理等方面着重进行阐述,并阐明了海洋腐蚀条件下钢筋锈蚀组织变化规律,揭示了低合金化钢筋材料的耐蚀机理,指出高抗蚀筋材耐蚀性研究中存在的问题,最后提出低合金化海工筋材体系开发的必要性及其耐蚀性研究的重点,以期为高抗蚀钢筋的研发及推广应用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦芳诚
亓海全
孟征兵
陈平
黄玉鸿
关键词:  海工钢筋  不锈钢  低合金化  组织性能  耐蚀机理    
Abstract: With the implementation of the development strategy of national maritime power and seaward economy, the rapid development of major marine projects in Beibu gulf, the south China seas and the ASEAN coastal areas is facilitated. As an important basic material for marine construction, maritime reinforced concrete has been widely used in coastal infrastructures including ports and wharves, cross-sea bridges, subsea tunnel, artificial island, offshore drilling platform, etc. The increasing market demand of rebar for ocean engineering is also given.
Due to the complex marine environment such as high temperature, high humidity and high salt and fog, problems including corrosion, paint peeling, cracking and rapid functional failure of steel bar materials are presented. The durability and service life of concrete and marine enginee-ring structures are directly related to the corrosion resistance of rebar. The new challenges to the traditional ocean engineering materials are proposed. Thus, it is urgent to conduct a study on the corrosion resistance of marine steel bar materials. The numerous investigation and fruitful results of the corrosion behavior and structural durability of steel reinforcement in marine engineering have been carried out by scholars at home and abroad in the last decade. The traditional low carbon steel rebar with limited corrosion-resistance are mainly characterized by uniform corroding in a large area. The bonding force between rebar and concrete structure is reduced, and the rust swelling, cracking and spalling are caused. Due to the local pitting, the critical concentration of Cl- is high and the corrosion rate is low in the stainless steel rebar. However, the total content of Cr and Ni is as high as 20%, leading to the high cost. For the coated/plated steel rebar, the corrosion of concrete and its surrounding erosion media are prevented. However, the cracking tendency increases with the concrete strength and the thickness of protective layer increasing. The low alloyed rebar is mainly characterized by the double layer passivation films, high Cl- corrosion-resistance and high stability of rust layer, of which Cr and Ni increase the passivation interval and provide high stability of rust layer, and its corrosion rate is far lower compared with that in low carbon steel rebar. Therefore, the increasing applications of alloyed marine steel rebar with high corrosion-resistance in the major projects such as ports, wharves, and cross-sea bridges are achieved.
In this paper, the advances in rebar materials for ocean engineering are summarized; the characteristics, microstructures, corrosion behavior and properties, and the corrosion mechanisms in the rebar are expounded; the change rule of microstructure of rebar rust layer in the actual marine corrosion conditions is clarified; the corrosion resistant mechanisms in low alloying rebar are revealed. The existing problems in the high corrosion resistant rebar research are pointed out. Furthermore, the necessity of developing low alloyed rebar and its research direction in corrosion resistance properties are put forward to provide theoretical basis for the research and application of high corrosion resistant rebar.
Key words:  rebar for ocean engineering    stainless steel    low alloyed    microstructure and mechanical properties    corrosion resistant mechanism
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TG331  
  TG142  
基金资助: 国家自然科学基金(51875383);广西创新驱动发展专项(桂科AA18242007);广西自然科学基金项目(2019GXNSFAA245051;2018GXNSFBA281056);桂林理工大学科研启动基金(GUTQDJJ2017140)
通讯作者:  alexander_qi@163.com   
作者简介:  秦芳诚,桂林理工大学副教授,硕士研究生导师。主要研究方向为金属材料连续与精密成形技术、精确塑性成形过程组织演变与性能控制。近年来主持和参与国家自然科学基金项目、广西自然科学基金项目和企业委托项目5项,获省级自然科学二等奖1项,出版学术专著1部,发表论文30余篇,其中SCI/EI收录15篇,获授权发明专利15项。
亓海全,桂林理工大学副教授,硕士研究生导师。昆明理工大学和钢铁研究总院联合培养博士,涟源钢铁有限公司博士后。主要研究方向:(1)耐磨耐蚀材料的开发、应用及新型热处理技术研发;(2)轻金属材料的连接技术研究。参与和主持过国家973项目、国家基金委、广西科技厅、广西教育厅和多项企业技术开发课题。受理和授权发明专利6项,发表论文10余篇。
引用本文:    
秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
QIN Fangcheng, QI Haiquan, MENG Zhengbing, CHEN Ping, HUANG Yuhong. Advances in High Corrosion Resistant Rebar for Ocean Engineering. Materials Reports, 2022, 36(6): 20060137-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060137  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20060137
1 Giuseppe L, Stefano P, Milo V K. Construction and Building Materials, 2019, 228, 116606.
2 Zhang J C, Zuo L F, Jiang J Y, et al. Journal of Chinese Society for Corrosion and Protection, 2016, 36(4), 363 (in Chinese).
张建春,左龙飞,蒋金洋,等. 中国腐蚀与防护学报, 2016, 36(4), 363.
3 Song D, You K, Cheng Z J,et al. Hot Working Technology, 2016, 45(2), 9 (in Chinese).
宋丹,游凯,程兆俊,等. 热加工工艺, 2016, 45(2), 9.
4 Yang Z M, Chen Y, Wang H M.In: 2009 National Seminar Proceedings in Production, Design and Application Technology of Construction Reinforcement,Beijing,2009,pp.133 (in Chinese).
杨忠民,陈颖,王慧敏. 2009全国建筑钢筋生产、设计与应用技术交流研讨会会议文集,北京, 2009, pp. 133.
5 Polde R B, Lavbi J A. Concrete, 1996,25(7-8), 8.
6 Mehta P K. In:Proceeding Second International Conference on Concrete Durability. America,1991,pp.1.
7 Lambert P. Anti-Corrosion Methods and Materials,1995, 30(1), 8.
8 Hong D H, Fan W G, Luo D K,et al. ACI Materials Journal,1993, 90(1), 3.
9 Berke N S,Hicks M C. Cement and Concrete Composites, 2004, 26(3), 191.
10 Stratmnn M. Corrosion Science,1987,27,863.
11 Marco C, Andrea D S, Antonio B,et al. Construction and Building Materials, 2018,34(181), 335.
12 Cramer S D, Covino J B S, Bullard S J,et al. Cement and Concrete Composites, 2002, 24(1), 101.
13 Jing Q, Fang X, Ni J X,et al. Journal of Highway and Transportation Research and Development, 2017, 34(10), 51 (in Chinese).
景强,方翔,倪静姁,等. 公路交通科技, 2017, 34(10), 51.
14 Wang S N, Su Q K,Fan Z H,et al. China Civil Engineering Journal,2014,47(6),1 (in Chinese).
王胜年,苏权科,范志宏,等. 土木工程学报, 2014, 47(6), 1.
15 Wang S N, Li K F, Fan Z H,et al. Port & Waterway Engineering, 2015, 501(3), 78 (in Chinese).
王胜年,李克非,范志宏,等. 水运工程, 2015, 501(3), 78.
16 Feng X G, Shi R L, Xu Y W,et al. In: 18th Seminar Proceedings in the National Ocean (Shore) Project, Zhejiang,2017, pp.736 (in Chinese).
冯兴国,石锐龙,徐逸文,等. 第十八届中国海洋(岸)工程学术讨论会论文集,浙江,2017, pp.736.
17 Bautista A, Paredes E C, Alvarez S M, et al. Corrosion Science, 2015,102,363.
18 Alonso M C G, González J A, Miranda J, et al. Cement and Concrete Research, 2007, 37(11),1562.
19 Chen L, Qu Y, Tang Y B, et al. Corrosion & Protection, 2014, 35(5), 446 (in Chinese).
陈龙,瞿彧,汤雁冰,等. 腐蚀与防护, 2014, 35(5), 446.
20 Da B,Yu H F,Ma H Y,et al. Construction and Building Materials,2016,122,81.
21 Wang Q K, Li P, Tian Y P,et al. Journal of Wuhan University of Technology-Materials Science Edition,2016,31(5),996.
22 Zhang X B, Lian J. Metal Forming (Hot Forming),2011,61(10),43 (in Chinese).
张心保,连杰. 金属加工(热加工),2011,61(10),43.
23 Yu W, Zhang Z Y, Wu W,et al. Journal of Iron and Steel Research, 2019, 31(4), 380 (in Chinese).
余伟,张泽宇,吴伟,等. 铁研究学报, 2019, 31(4), 380.
24 Li M L,Yang Z G, Liu Z Y, et al. Concrete World,2018,104(2),62 (in Chinese).
李明利,杨正光,刘志勇,等. 混凝土世界,2018,104(2),62.
25 Sun W, Song D, Jiang J Y. In: Proceedings of the 2013 National Acade-mic Annual Conference on Highway Maintenance Technology, Nanjing, 2013, pp. 1 (in Chinese).
孙伟,宋丹,蒋金洋. 2013年全国公路养护技术学术年会论文集, 南京, 2013, pp. 1.
26 Xu Q F,Jiang Y S. Industrial Construction,1999,29(6),45 (in Chinese).
许清风,蒋永生.工业建筑,1999,29(6),45.
27 Gao Y,Wang X H,Wang J,et al. Sichuan Building Science,2015,41(6),24 (in Chinese).
高扬,王小惠,王菁,等. 四川建筑科学研究,2015,41(6),24.
28 Xue W C. Journal of Tongji University(Natural Science),2001,29(7),769 (in Chinese).
薛伟辰. 同济大学学报(自然科学版),2001,29(7),769.
29 Wang H B,Qian H,Zhang L D,et al. Structural Engineers,2019,35(6),181 (in Chinese).
王红兵,钱昊,张洛栋,等. 结构工程师,2019,35(6),181.
30 Yan D,Reis S,Tao X,et al. Construction and Building Materials,2012,28(1),512.
31 Yan D,Chen S,Chen G,et al. Journal of Zhejiang University-Science A,2016,17(5),366.
32 Shi J,Chen G,Huang Z H,et al. Structural Engineers,2019,35(4),162 (in Chinese).
史杰,陈功,黄之昊,等. 结构工程师,2019,35(4),162.
33 Yang F, Huang Z H, Liu Y,et al. Low Temperature Architecture Technology,2018,40(2),1 (in Chinese).
杨帆,黄之昊,刘毅,等. 低温建筑技术,2018,40(2),1.
34 Gao Y,Wang X H,Wang J,et al. Sichuan Building Science,2015,41(6),62 (in Chinese).
高扬,王小惠,王菁,等. 四川建筑科学研究,2015,41(6),62.
35 Gui S J,Chen Y,Wang X H. Concrete and Cement Products,2019,46(10),68 (in Chinese).
桂世杰,陈瑜,王小惠. 混凝土与水泥制品,2019,46(10),68.
36 Long X,Wang C Y,Zhao P Z,et al. Construction and Building Materials,2020,238,117749.
37 Jiang Q, Liu Y J,Liu R P. China Building Materials Technology,2010,8(S1),83 (in Chinese).
蒋荃,刘玉军,刘儒平. 中国建材科技,2010,8(S1),83.
38 Dou Y M, Deng L C, Zhang J J,et al. Journal of Hebei University of Technology,2019,48(6),69 (in Chinese).
窦远明,邓留藏,张晶晶,等. 河北工业大学学报,2019,48(6),69.
39 Moreno F P, Scully J R, Sharp S R. Corrosion,2010,66(8),1.
40 Akhoondan M, Sagüés A A. Corrosion,2011,37(8),11010.
41 Ai Z Y, Sun W, Jiang J Y. Corrosion Science and Protection Technology,2015,27(6),525 (in Chinese).
艾志勇,孙伟,蒋金洋. 腐蚀科学与防护技术,2015,27(6),525.
42 Ge Y, Zhu X C, Li Y. Corrosion protection of reinforced concrete structures, Chemical Industry Press, China,2011 (in Chinese).
葛燕,朱锡昶,李岩. 桥梁钢筋混凝土结构防腐蚀, 化学工业出版社,2011.
43 Ai Z Y, Sun W, Jiang J Y,et al. Materials Reports A: Review Papers,2016,30(8),92 (in Chinese).
艾志勇,孙伟,蒋金洋,等. 材料导报:综述篇,2016,30(8),92.
44 Zuo Longfei,Ma Han,Huang Wenke,et al. Steel Rolling,2014,31(3),58 (in Chinese).
左龙飞,麻晗,黄文克,等. 轧钢,2014,31(3),58.
45 Zuo L F,Zhang J C,Ma H,et al. Corrosion & Protection,2017,38(2),83 (in Chinese).
左龙飞,张建春,麻晗,等. 腐蚀与防护,2017,38(2),83.
46 Nachiappan V,Cho E H. Journal Performance of Constructed Facilities,2005,19(4),56.
47 Singh J K,Singh D D N. Corrosion Science,2012,56,129.
48 Hurley MF. Charlottesville: University of Virginia,2007,52(356),167.
49 Yu T R, Guo Z,Chen K Z,et al. Anhui Metallurgy,2017,10(3),11 (in Chinese).
于同仁,郭湛,陈开智,等. 安徽冶金,2017,10(3),11.
50 Liu M,Cheng X Q,Li X G,et al. Corrosion Science and Protection Technology,2015,27(6),559 (in Chinese).
刘明,程学群,李晓刚,等. 腐蚀科学与防护技术,2015,27(6),559.
51 Zhang J C,Ma H,Zuo L F,et al. Journal of Chinese Society for Corrosion and Protection,2015,35(5),461 (in Chinese).
张建春,麻晗,左龙飞,等. 中国腐蚀与防护学报,2015,35(5),461.
52 Tuutti K. ACI 5P-65, Detroit:American Concrete Institute,1980,65,223.
53 Tian Y W,Liu M,Cheng X Q,et al. Cement and Concrete Composites,2019,97,190.
54 Ai Z Y,Jiang J Y,Jiang X L,et al. Journal of Building Structures,2019,40(1),132 (in Chinese).
艾志勇,蒋金洋,江祥林,等. 建筑结构学报,2019,40(1),132.
55 Yamashita M, Nagano H, Misawa T,et al. ISIJ International,1998,38(3),285.
56 Kamimura T, Stratmann M. Corrosion Science,2001,43(3),429.
57 Zhang Q C,Wang J J,Wu J S,et al. Acta Metallurgica Sinica,2001,37(2),193 (in Chinese).
张全成,王建军,吴建生,等. 金属学报,2001,37(2),193.
58 Kihipa H, Ito S, Mizoguchi A, et al. Zairyo-to-Kankyo,2000,49(1),30.
59 Toshiyasu N, Hideki K, Kazuhiko N, et al. Corrosion Science,2000,42(9),1611.
60 Mancio M, Kusinski G, Monteiro P J M, et al. Journal ASTM International,2009,6(5),1.
61 Mohamed N, Boulfiza M, Evitts R. Journal of Materials Engineering and Performance,2013,22(3),787.
[1] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[2] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[3] 郭金刚, 陈红, 李俊荣, 唐子龙, 陈清明. 316L不锈钢双极板元素富集耐腐蚀特性研究[J]. 材料导报, 2021, 35(z2): 391-394.
[4] 沈天阔. 控制棒驱动机构可拆接头用X12CrNi13马氏体不锈钢冲击失效分析及改进[J]. 材料导报, 2021, 35(z2): 404-409.
[5] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[6] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[7] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[8] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[9] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[10] 李连奇, 杨占兵. 奥氏体不锈钢辐照肿胀和偏析的研究进展[J]. 材料导报, 2021, 35(5): 5122-5129.
[11] 刘成龙, 唐正友, 马亮, 马婉婉, 郭昊东, 丁桦. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J]. 材料导报, 2021, 35(24): 24147-24151.
[12] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[13] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[14] 王超, 谢志雄, 罗平, 陈琪, 肖述广, 董仕节, 解剑英. 0.3 mm厚316奥氏体不锈钢的高频感应焊接技术[J]. 材料导报, 2021, 35(22): 22132-22136.
[15] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed