Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6167-6173    https://doi.org/10.11896/cldb.19120207
  金属与金属基复合材料 |
基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能
陈宇强1, 张浩1, 黄浩2, 张文涛1, 谢功园1, 刘文辉1, 潘素平3, 宋宇峰1, 刘阳1
1 湖南科技大学新能源储存与转换先进材料湖南省重点实验室,湘潭 411201
2 江麓机电集团有限公司,湘潭 411201
3 中南大学高等研究中心,长沙 410083
Study on Microstructure and Properties of 6061 Al Alloy/304 Stainless Steel Multilayered Composites Based on High-Temperature Torsion Method
CHEN Yuqiang1, ZHANG Hao1, HUANG Hao2, ZHANG Wentao1, XIE Gongyuan1, LIU Wenhui1, PAN Suping3, SONG Yufeng1, LIU Yang1
1 Hunan Provincial Key Laboratory of New Energy Storage and Conversion of Advanced Materials, Hunan University of Science and Technology, Xiangtan 411201, China
2 Jianglu Machinery Electronics Group Co., Ltd, Xiangtan 411201, China
3 Advanced Research Center, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 10581KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属层状复合材料因兼具各金属组元的优良性能是目前材料界研究的热点。本工作利用高温扭转方法开发了一种新型多层金属复合材料的成型工艺,并通过力学拉伸性能测试、扫描电镜(SEM)、能谱仪(EDS)和电子背散射衍射(EBSD)分析,探究了不同扭转工艺对6061铝合金/304不锈钢层状复合材料组织和性能的影响。实验结果显示,在1 080~2 160°的扭转角度范围内,随着扭转角度增加,6061铝合金/304不锈钢复合材料的抗拉强度(σth)下降,伸长率(δ)显著提高,且界面结合效果越来越好。在保持扭转力的条件下进行0~60 min的保温处理,复合材料的σth和δ随着保温时间的延长没有明显变化,但结合界面中金属原子之间的相互扩散效果更加显著,界面处的应力集中也显著降低。经1 080°扭转成型后,复合材料的σth为333.4 MPa,δ为77.3%,均高于该复合材料的理论计算值,这可能与该复合材料扭转成型过程中的组织细化以及其独特的螺旋型结构有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇强
张浩
黄浩
张文涛
谢功园
刘文辉
潘素平
宋宇峰
刘阳
关键词:  高温扭转  层状复合材料  6061铝合金/304不锈钢    
Abstract: Due to their excellent properties, metal multilayered composites have recently become a research hotspot in material science. In this paper, a new type of forming technique for metal multilayered composite was developed through high-temperature torsion. Using mechanical tensile test, scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and electron backscatter diffraction (EBSD) analysis, the effects of torsion processes on the microstructure and properties of 6061 Al alloy/304 stainless steel multilayered composites were studied. The results show that, the tensile strength (σth) of the composite decreases with the increase of torsion angle from 1 080° to 2 160°, while its elongation (δ) increases significantly. Keeping the torsion force for 0 min to 60 min, the σth and δ values of the composite change little, while the element diffusion at the interface become evident and the local stress concentration at the interface is released. After a 1 080° torsion, the σth and δ values of the composite are 333.4 MPa and 77.3% respectively, which are higher than their corresponding theoretical values. This is probably due to the microstructure refinement of composite during high temperature torsion and its particular screw-type structure.
Key words:  high temperature torsion    metal multilayered composite    6061 Al alloy/304 stainless steel
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51405153;51875197)
通讯作者:  yqchen1984@163.com   
作者简介:  陈宇强,男,博士,副教授,湖南科技大学材料科学与工程学院副院长,主要研究方向为铝合金加工工艺与性能、损伤机理以及微结构表征。入选湖湘青年英才支持计划、湖南省青年骨干教师、湖南省科技创新创业菁英培育计划。主持国家自然科学基金、湖南省创新创业技术投资专项、湘潭市科技创新“四个十”重大科技专项、校企合作科研项目、产学研成果转化项目等科研项目7项,获得湖南省自然科学奖三等奖一项,在Materials Science and Engineering A、Journal of Alloys and Compounds等学术刊物发表学术论文40余篇,获得授权专利10余项,软件注册权8项,担任Journal of Alloys and Compounds、Journal of Materials Science & Technology、Micro & Nano Letters等期刊审稿人。
引用本文:    
陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
CHEN Yuqiang, ZHANG Hao, HUANG Hao, ZHANG Wentao, XIE Gongyuan, LIU Wenhui, PAN Suping, SONG Yufeng, LIU Yang. Study on Microstructure and Properties of 6061 Al Alloy/304 Stainless Steel Multilayered Composites Based on High-Temperature Torsion Method. Materials Reports, 2021, 35(6): 6167-6173.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120207  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6167
1 Chen X Z. Nonferrous Metal Materials and Engineering,2017,38(2),63(in Chinese).
陈兴章.有色金属材料与工程,2017,38(2),63.
2 Wu J, Xue S B, Fei W P, et al. Materials Reports A: Review Papers,2019,33(11),3533(in Chinese).
吴杰,薛松柏,费文潘,等.材料导报:综述篇,2019,33(11),3533.
3 Zhu Z T, Wan Z D, Xue J Y. Materials Reports B: Research Papers,2017,31(6),52(in Chinese).
朱宗涛,万占东,薛珺予.材料导报:研究篇,2017,31(6),52.
4 He Z H. Popular Science & Technology,2016,18(200),59(in Chinese).
何泽华.大众科技,2016,18(200),59.
5 Zheng H, Zhao X Y. Forging & Stamping Technology,2016,41(2),1(in Chinese).
郑晖,赵曦雅.锻压技术,2016,41(2),1.
6 Zhu Y L. The study of microstructure and corrosion behavior of aluminum/steel clad materials. Master's Thesis, Tianjin University, China,2016(in Chinese).
朱杨林.铝/钢层状复合材料的组织与腐蚀行为研究.硕士学位论文,天津大学,2016.
7 Li Y W, Liu H T, Wang Z J, et al. Materials Science & Engineering A,2018,731,377.
8 Ma M, Huo P, Liu W C, et al. Materials Science Engineering A,2015,636,301.
9 Wang Y D. Research on rolling process and interface behavior of Mg/Al explosive composite plate. Master's Thesis, Taiyuan University of Technology, China,2017(in Chinese).
王东亚.镁/铝爆炸复合板轧制工艺及界面行为研究.硕士学位论文,太原理工大学,2017.
10 Liu P T, Ma L F, Jia W T, et al. Journal of Materials Science and Engineering,2016,34(3),497(in Chinese).
刘鹏涛,马立峰,贾伟涛,等.材料科学与工程学报,2016,34(3),497.
11 Li T, Wang S C, Qi W J, et al. Light Alloy Fabrication Technology,2015,43(2),38(in Chinese).
李滔,王顺成,戚文军,等.轻合金加工技术,2015,43(2),38.
12 Li X P. Study on isothermal extrusion forming, interfacial microstructure evolution and mechanical properties of Al-Mg bimetals. Master's Thesis, Lanzhou University of Technology, China,2019(in Chinese).
李晓艳.铝镁双金属等温挤压成形及界面组织演化与力学性能研究.硕士学位论文,兰州理工大学,2019.
13 Fan X, Chen L, Chen G, et al. Journal of Materials Processing, Techno-logy,2017,250,65.
14 Wu Y. Microstructure and mechanical properties of Mg/Al composite laminates fabricated by extrusion. Master's Thesis, Chongqing University, China,2016(in Chinese).
吴洋.利用挤压制备镁/铝合金复合板材的组织与性能研究.硕士学位论文,重庆大学,2016.
15 Qiu X R, Wu G Q, Pan Y C, et al. Journal of Beijing University of Aeronautics and Astronautics,2017,43(12),2547(in Chinese).
邱相儒,吴国清,潘英才,等.北京航空航天大学学报,2017,43(12),2547.
16 Chen J, Bao C, Cen F. Materials Science and Engineering A,2016,667,426.
17 Binotsch C, Nickel D, Feuerhack A, et al. Procedia Engineering,2014,81,540.
18 Liu X B, Chen R S. Journal of Materials Processing Technology,2009,209,4675.
19 Riemelmoser F, Kilian H, Widlicki P, et al. Wiley-VCH Verlag Gmb H & Co. KGa A,2007,248.
20 Zhu Y W, Xie G Z. Mining and Metallurgical Engineering,1998,18(2),68(in Chinese).
朱永伟,谢刚朝.矿冶工程,1998,18(2),68.
21 Ni W H, Gao J, Special Steel,2002,23(3),7(in Chinese).
倪红卫,高娟,唐利民.特殊钢,2002,23(3),7.
22 Ding Y G, Wang B X T, Li P, et al. The Chinese Journal of Nonferrous Metals,2017,27(6),1125(in Chinese).
丁永根,王薄笑天,李萍,等.中国有色金属学报,2017,27(6),1125.
23 Chen Y J. Research on high temperature torsion deformation behavior of 7A04 aluminum alloy. Master's Thesis, North University of China, China,2018(in Chinese).
陈亚京.7A04铝合金高温扭转变形行为研究.硕士学位论文,中北大学,2018.
24 Li C X. Study on preparation and properties of 7075/6061 bimetal composites. Master's Thesis, North China University of Science and Techno-logy, China,2016(in Chinese).
李春晓.7075/6061双金属复合材料的制备与性能研究.硕士学位论文,华北理工大学,2016.
25 Li Y, Hu Z L, Yu H Y, et al. Materials Reports A: Review Papers,2020,34(7),1(in Chinese).
李岩,胡志力,于海洋,等.材料导报:综述篇,2020,34(7),1.
26 Li Y S, Shen Y L. Guangxi Machinery,2001,21(4),34(in Chinese).
李永松,沈怡琳.广西机械,2001,21(4),34.
27 Cao H, Zhao X K, Ding Y, et al. Materials Characterization,2018,139,153.
28 Wang S, Liu B X, Chen C X, et al. Journal of Alloys and Compounds,2018,766,517.
29 Li X F, Kong X, Chen J, et al. Acta Materiae Compositae Sinica,2010,27(1),91(in Chinese).
李细锋,孔啸,陈军,等.复合材料学报,2010,27(1),91.
30 Wu Y, Feng B, Xin Y C, et al. Materials Science & Engineering A,2015,640,454.
31 Zhao L Z, Gong W B, Zhang H, et al. Transactions of Materials and Heat Treatment,2019,40(8),175(in Chinese).
赵立哲,宫文彪,张航,等.材料热处理学报,2019,40(8),175.
32 Mendes A, Timokhina I, Molotnikov A, et al. Materials Science and Engineering A,2017,705,142.
33 Tang J J, Wang J, Liu J L, et al. Forging & Stamping Technology,2019,44(7),165(in Chinese).
唐健江,王嘉,刘嘉乐,等.锻压技术,2019,44(7),165.
34 Ni H J, Gu T, Lv Y, et al. Hot Working Technology,2018,47(6),239(in Chinese).
倪红军,顾涛,吕毅,等.热加工工艺,2018,47(6),239.
35 Chen J H, Li M E, Yu J R, et al. Journal of Lanzhou University of Technology,2010,36(2),15(in Chinese).
陈剑虹,李明娥,余江瑞,等.兰州理工大学学报,2010,36(2),15.
36 Ding X Y, Chen Y Q, Zhang P, et al. Heat treatment of metal,2019,44(3),58(in Chinese).
丁幸宇,程永奇,张鹏,等.金属热处理,2019,44(3),58.
37 Zhang N N. Effect of combined process of deformation and heat treatment on microstructure and properties of 6061 aluminum alloy. Master's Thesis, Jiangsu University, China,2017(in Chinese).
张南南.变形与热处理组合工艺对6061铝合金组织和性能的影响.硕士学位论文,江苏大学,2017.
38 Wang C Y, Liu X H, Jiang Y B, et al. Science Bulletin,2018,63,1448.
39 Wang C Y, Jiang Y B, Xie J X, et al. Materials Science and Engineering A,DOI:10.1016/j.msea.2017.09.111.
40 Zuo X J. The research on organization structure and property of interfacial diffusion layer of Cu-Al composite plate. Ph.D. Thesis, Shenyang University of Technology, China,2017(in Chinese).
左晓姣.铜铝复合板界面扩散层组织结构与性能的研究.博士学位论文,沈阳工业大学,2017.
41 Talebian M, Alizadeh M. Materials Science and Engineering A,2014,590,186.
42 Li X X. Influence of different annealing temperatures n the microstructures and properties of cold rolling 304 L stainless steel. Master's Thesis, Northeastern University, China,2012(in Chinese).
李晓旭.不同的退火温度对冷轧304不锈钢组织性能的影响.硕士学位论文,东北大学,2012.
[1] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[2] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[3] 孙畅, 李龙, 周德敬. 层状复合材料界面结合强度非传统评价方法*[J]. 《材料导报》期刊社, 2017, 31(11): 59-67.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed