Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 59-67    https://doi.org/10.11896/j.issn.1005-023X.2017.011.008
  材料综述 |
层状复合材料界面结合强度非传统评价方法*
孙畅, 李龙, 周德敬
银邦金属复合材料股份有限公司,江苏省金属层状复合材料重点实验室,无锡 214145
Unconventional Evaluation Methods for Interface Bonding Strength of Layered Materials
SUN Chang, LI Long, ZHOU Dejing
Jiangsu Key Laboratory for Clad Materials, Yin Bang Clad Material Co., Ltd., Wuxi 214145
下载:  全 文 ( PDF ) ( 1743KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 简要总结了层状复合材料界面结合强度的非传统评价方法。非传统界面结合强度评价方法包括:波振法(激光层裂法、应力波法、超声波法、电磁波法)、划痕法(激光划痕法)、辅助分析法(X射线衍射法、有限元法、解析法)和其他方法(电阻法)。波振法是将载荷以冲击波的形式施加在界面位置处,实现复层和基体分离。划痕法是将高能激光作用于复层,分离界面,实现界面结合强度的测量。电阻法通过建立界面电阻和界面强度之间的关系,评价界面结合强度。与传统界面评价方法对比,非传统评价方法有特殊优点:对材料的破坏程度小,有效抑制材料的弹塑性变形,测得界面强度接近界面本征强度。但非传统法也仍存在一些亟待解决的问题,随着新材料的不断出现,需要不断改进现有测试方法,使界面结合强度评价方法向着简单易行、无损、自动化的方向发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙畅
李龙
周德敬
关键词:  层状复合材料  界面结合强度  激光  辅助分析法    
Abstract: This paper briefly summarizes unconventional evaluation methods for the interface bonding strength of layered materials. Unconventional evaluation methods for interface bonding strength of layered material include wave vibration methods (laser spallation method, stress wave method, ultrasonic method, electromagnetic wave method), scratching methods (laser scratch me-thod), auxiliary analysis methods (X-ray diffraction method, finite element method, analytic method) and other methods (resistance method). In wave vibration method, the load is applied on the interface in form of shock wave so that cladding layer and substrate are separated. In scratch method, high energy laser is applied to the cladding layer which cause the interface separation. Then the interface bonding strength of the material can be measured. In resistance method, the interface bonding strength can be measured by building the correlative relation between the resistance and interface bonding strength. By means of measuring interface resistance, the interface bonding strength is obtained. Compared with the conventional interface bonding strength evaluation methods, unconventional evaluation methods have special advantages. The damage degree to material is not serious, the elastic-plastic deformation is restrained effectively, the result of measured interface bonding strength is very close to the interface bonding intrinsic strength. Ho-wever, there are still some problems to be solved. It is necessary to continuously improve the existing testing methods, so as to make the evaluation methods of interface bonding strength simple and easy to operate, nondestructive and automated.
Key words:  layered materials    interface bonding strength    laser    auxiliary analysis method
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TB333  
基金资助: 江苏省金属层状复合材料重点实验室(BM2014006);无锡市科技发展资金项目(CZE02H1504);江苏省基础研究计划(自然科学基金)—面上研究项目(BK20161151)
通讯作者:  周德敬:通讯作者,男,1968年生,教授级高工,主要研究方向为金属复合材料 E-mail:dejing.zhou@cn-yinbang.com   
作者简介:  孙畅:男,1988年生,硕士,主要从事金属层状复合材料的研究 E-mail:chang.sun@cn-yinbang.com
引用本文:    
孙畅, 李龙, 周德敬. 层状复合材料界面结合强度非传统评价方法*[J]. 《材料导报》期刊社, 2017, 31(11): 59-67.
SUN Chang, LI Long, ZHOU Dejing. Unconventional Evaluation Methods for Interface Bonding Strength of Layered Materials. Materials Reports, 2017, 31(11): 59-67.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.008  或          http://www.mater-rep.com/CN/Y2017/V31/I11/59
1 Yang Banquan, Chen Guangnan, Zhang Kun, et al. A review on measurement methods for interfacial bonding strength between coa-ting and substrate[J]. Adv Mech, 2007, 37(1):67(in Chinese).
杨班权, 陈光南, 张坤, 等. 涂层/基体材料界面结合强度测量方法的现状与展望[J]. 力学进展,2007,37(1):67.
2 Jing Yang, Pang Siqin, Zhou Lanying, et al. Investigation on the bonding strength and other properties between different substrates and composite coatings[J]. Acta Arm Amentarii,2002,23(4):517(in Chinese).
荆阳, 庞思勤, 周兰英, 等. 不同材料基体与复合涂层间的结合强度等性能分析[J]. 兵工学报,2002,23(4):517.
3 Liu Huan, Zuo Xiaojiao, Huang Hongjun, et al. Bonding strength of copper and aluminum composite plate by stripping method[J]. Special Cast Nonferrous Alloys,2014,34(5):529(in Chinese).
刘欢, 左晓姣, 黄宏军, 等. 剥离法测定铜-铝复合板的结合强度[J]. 特种铸造及有色合金,2014,34(5):529.
4 Khan A N, Lu J, Liao H. Heat treatment of thermal barrier coa-tings[J]. Mater Sci Eng A,2003,359(1):129.
5 Wang Jun, Tian Chunying, Wu Shuyan, et al. Research status and development of coating bonding strength[J]. Welding Joining,2010(11):19(in Chinese).
王军, 田春英, 武淑艳,等. 涂层结合强度研究现状与发展[J]. 焊接, 2010(11):19.
6 Schmidbauer S, Hahn J, Richter F, et al. Adhesion of metal coa-tings on ceramics deposited by different techniques[J]. Surf Coat Technol,1993,59(1-3):325.
7 Rother B, Donohue L A, Kappl H. Quantification of the interface strength between (Ti, Zr) N coatings and high speed steel[J]. Surf Coat Technol,1996, 82(3):214.
8 Müller D, Cho Y R, Fromm E. Adhesion strength of ductile alumi-nium and brittle TiN coatings on steel, aluminium and copper, mea-sured by fracture mechanics tests[J]. Surf Coat Technol,1995,74:849.
9 Ollendorf H, Schneider D. A comparative study of adhesion test methods for hard coatings[J]. Surf Coat Technol,1999,113(1):86.
10 Majumdar B S, Gundel D B, Dutton R E, et al. Evaluation of the tensile interface strength in brittle-matrix composite systems[J]. J Am Ceram Soc, 1998,81(6):1600.
11 Zhou Wei, Qiu Changjun, He Bin, et al. Experimental study for bond strength of high-strength coatings[J]. J University of South China: Sci Technol,2005,19(2):23(in Chinese).
周伟, 邱长军, 何彬, 等. 高强度涂层结合性能的试验研究[J]. 南华大学学报: 自然科学版,2005,19(2):23.
12 Li Long, Zhang Xinjin, Liu Huiyun, et al. Methods for evaluating interfacial bonding of laminated metal composites[J]. J Wuhan University of Science and Technology,2013,36(3):195(in Chinese).
李龙, 张心金, 刘会云, 等. 金属层状复合材料结合性能的评价方法[J]. 武汉科技大学学报:自然科学版,2013,36(3):195.
13 Gupta V, Argon A S, Parks D M, et al. Measurement of interface strength by a laser spallation technique[J]. J Mechan Phys Solids,1992,40(1):141.
14 Sarkissian K. Adhesion measurement of thin films, thick films and bulk coatings[M]. Philadephia:ASTM,1978.
15 White R M. Generation of elastic waves by transient surface heating[J]. J Appl Phys,1963,34(12):3559.
16 Telschow K L, Conant R J. Optical and thermal parameter effects on laser-generated ultrasound[J]. J Acoust Soc Am,1990,88(3):1494.
17 Yuan J, Gupta V. Measurement of interface strength by the modified laser spallation technique. I. Experiment and simulation of the spallation process[J]. J Appl Phys,1993,74(4):2388.
18 Gupta V, Yuan J. Measurement of interface strength by the modified laser spallation technique. Ⅱ. Applications to metal/ceramic interfaces[J]. J Appl Phys,1993,74(4):2397.
19 Yuan J, Gupta V, Pronin A. Measurement of interface strength by the modified laser spallation technique. Ⅲ. Experimental optimization of the stress pulse[J]. J Appl Phys,1993,74(4):2405.
20 周明, 张永康, 蔡兰, 等. 激光层裂法定量测定薄膜界面结合强度[J]. 中国科学E辑, 2002, 32(1):28.
21 Gupta V, Argon A S, Parks D M, et al. Measurement of interface strength by a laser spallation technique[J]. J Mechan Phys Solids,1992,40(1):141.
22 Phipps Jr C R, Turner T P, Harrison R F, et al. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers[J]. J Appl Phys,1988, 64(3):1083.
23 Gupta V, Pronin A, Anand K. Mechanisms and quantification of spalling failure in laminated composites under shock loading[J]. J Compos Mater,1996,30(6):722.
24 Yu A, Gupta V. Measurement of in situ fiber/matrix interface strength in graphite/epoxy composites [J]. Compos Sci Technol,1998, 58(11):1827.
25 Sartori C, Oltra R, Dubief P. A pulsed laser technique for an evaluation of the spall resistance of sputtered oxide films: Diagnostic by interferometric probing[J]. Surf Coat Technol,1998,106(2):251.
26 Zhou M, Wang X, Gao C, et al. Theoretic analysis and numerical simulation on quantitative evaluation of interface strength by pulsed-laser technology[C]∥ International Society for Optics and Photo-nics.Cardiff,1999:433.
27 Zhang Yongkang. Study on visual inspection and control methods of effectiveness of laser shock-processing[J]. Chinese J Laser,1997,24(5):467(in Chinese).
张永康. 激光冲击强化效果的直观判别与控制方法研究[J]. 中国激光,1997, 24(5):467.
28 Zeng Danyong, Zhou Ming, Yu Zilan, et al. Quantitative measurement of adhesive strength by the laser spallation technique[J]. Appl Laser,2001,21(4):240(in Chinese).
曾丹勇, 周明, 於自岚, 等. 用激光技术定量测量涂层/基体的结合强度[J]. 应用激光,2001,21(4):240.
29 Youtsos A G, Kiriakopoulos M, Timke T. Experimental and theoretical/numerical investigations of thin films bonding strength[J]. Theoret Appl Fracture Mech,1999,31(1):47.
30 Archer P, Gupta V. Measurement and control of ice adhesion to aluminum 6061 alloy[J]. J Mech Phys Solids,1998,46(10):1745.
31 Zeng Danyong, Zhou Ming. Research of measurement of coating and substrate adhesion strength by the laser spallation technique[J]. J Jiangsu University:Natural Science Edition,2000,21(3):5(in Chinese).
曾丹勇, 周明. 激光层裂技术测量涂层与基体结合强度研究[J]. 江苏理工大学学报: 自然科学版,2000,21(3):5.
32 Nutt G L, King W E. Comments on the bond strength measurements of Gupta and co-workers[J]. Mater Sci Eng: A,1992,159(2):135.
33 Tang Cuiping.Simulated analysis film substratum bonding strength on laser scratching test[D].Zhenjia:Jiangsu University,2007(in Chinese).
唐翠屏. 基于激光划痕法测量膜基结合强度的模拟分析[D]. 镇江:江苏大学, 2007.
34 Yu Binbin, Yuan Juntang, Sun Huaiyang, et al. Theory and experimental research of new detection technique for interface adhesion strength[J]. Mater Sci Technol,2011,19(5):72(in Chinese).
于斌斌, 袁军堂, 孙淮阳, 等. 新型界面结合强度检测技术理论及实验研究[J]. 材料科学与工艺,2011,19(5):72.
35 Feng A X, Zhang Y K, Xie H K, et al. A study on the new method of laser scratch testing technique to characterize interfacial adhesion between thin film and substrate[J]. Key Eng Mater,2004,259:615.
36 Yin Sumin,Ye Yong, Feng Aixin, et al. Theoretical analysis and testing research of stress-strain of coating scratched by infrared laser[J]. Chinese J Lasers,2008,35(9):1423(in Chinese).
殷苏民, 叶勇, 冯爱新, 等. 红外激光划痕涂层的应力应变理论分析[J]. 中国激光,2008,35(9):1423.
37 Feng Aixin, Xie Huakun, Zhang Yongkang,et al. Study on laser scratching technique for testing of interfacial strength of film-substrate system[J]. Tool Eng, 2003,37(9):10(in Chinese).
冯爱新, 谢华锟, 张永康, 等. 膜-基界面结合性能激光划痕检测方法技术优势分析[J]. 工具技术,2003,37(9):10.
38 Feng Aixin, Zhang Yongkang, Xie Huakun, et al. New method of laser scratching to determine the bond strength of the film-substrate interface[J]. Chinese J Lasers, 2004,31(z1):329(in Chinese).
冯爱新,张永康,谢华锟,等.界面结合强度激光划痕测量新方法[J].中国激光,2004,31(z1):329.
39 李维特,黄保海,毕钟波.热应力理论分析及应用[M].北京:中国电力出版社,2004:59.
40 Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London,1914,213:437.
41 蔡继红. 利用应力波测定涂层结合强度的研究[D]. 天津:天津大学,2005.
42 Hou Zhende, Tang Lingxia, Fu Donghui, et al. Measurement of bond strength of coating using stress wave[J]. Acta Arm Amentarll,2006,27(2):306(in Chinese).
侯振德, 汤灵霞, 富东慧, 等. 利用应力波测量涂层的结合强度[J]. 兵工学报,2006,27(2):306.
43 Krongelb S. Electromagnetic tensile adhesion test method[M]. Philidephia:ASTM International,1978:34.
44 Lian D, Suga Y, Shou G, et al. An ultrasonic testing method for detecting delamination of sprayed ceramic coating[J]. J Thermal Spray Technol,1996, 5(2):128.
45 Barbee Jr T W, Huggins R A, Little W A. The effects of dislocation distribution on the low temperature electrical transport properties of deformed metals[J]. Philosophical Magazine,1966,14(128):255.
46 Manesh H D. Assessment of surface bonding strength in Al clad steel strip using electrical resistivity and peeling tests[J]. Mater Sci Technol,2006,22(6):634.
47 van Vlack L H. Materials science for engineers[M]. New Jersey:Addison-Wesley Publishing Company,1982:215.
48 Bennani H H, Takadoum J. Finite element model of elastic stresses in thin coatings submitted to applied forces[J]. Surf Coat Technol,1999,111(1):80.
49 Stephens L S, Liu Y, Meletis E I. Finite element analysis of the initial yielding behavior of a hard coating/substrate system with functionally graded interface under indentation and friction[J]. J Tribo-logy,2000,122(2):381.
50 Kral E R, Komvopoulos K, Bogy D B. Finite element analysis of repeated indentation of an elastic-plastic layered medium by a rigid sphere, Part Ⅱ: Subsurface results[J]. J Appl Mech,1995,62(1):29.
51 Sun Y, Bloyce A, Bell T. Finite element analysis of plastic deformation of various TiN coating/substrate systems under normal contact with a rigid sphere[J]. Thin Solid Films,1995,271(1):122.
52 González J A, Abascal R. Efficient stress evaluation of stationary viscoelastic rolling contact problems using the boundary element method: Application to viscoelastic coatings[J]. Eng Anal Boundary Elements,2006,30(6):426.
53 Liu X Q, Wang Y S, Zhu J H. Epoxy resin/polyurethane functionally graded material prepared by microwave irradiation[J]. J Appl Polym Sci,2004,94(3):994.
54 Li Long, Zhu Zhichao, Zhou Dejing, et al. Application of finite element analysis in development of metal clad materials[J]. Southern Metals,2015(6):1(in Chinese).
李龙, 祝志超, 周德敬, 等. 有限元分析在金属层状复合材料开发中的应用[J]. 南方金属,2015(6):1.
55 Zhu Zhichao, Li Long, Yin Fuxing. Finite element analysis on shearing test of stainless cladding steel[J]. CFHI Technology,2013(2):18(in Chinese).
祝志超, 李龙, 殷福星. 不锈钢复合板界面剪切试验的有限元分析[J]. 一重技术,2013(2):18.
56 Tian H, Saka N. Finite element analysis of an elastic-plastic two-layer half-space: Sliding contact[J]. Wear,1991,148(2):261.
57 Yan Jianhui, Wang Jiugen, Qi Zhenhui. Finite element analysis on optimal thickness of single layered coating[J]. J Machine Des,2004,21(1):7(in Chinese).
鄢建辉,汪久根,綦振辉.单层涂层最佳厚度的有限元分析[J].机械设计,2004,21(1):7.
58 Njiwa R K, Consiglio R, Von Stebut J. Boundary element modelling of a coating-substrate composite under an elastic, Hertzian type pressure field: Cylinder on flat contact geometry[J]. Surf Coat Technol,1998,102(1):138.
59 Njiwa R K, Von Stebut J. Boundary element numerical modelling as a surface engineering tool: Application to very thin coatings[J]. Surf Coat Technol,1999, 116:573.
60 Zhao Xishu, Zhang Shuangyin, Wu Yongli. An analysis of a crack in functionally gradient coatings by inhomogeneous finite element[J]. Eng Mechan,2002, 19(4):118(in Chinese).
赵希淑, 张双寅, 吴永礼. 梯度涂层材料中裂纹问题的非均匀元分析[J]. 工程力学,2002,19(4):118.
61 程序, 闫静, 王宏宇, 等. 高结合性能涂层与基体界面结合强度测定模型的有限元模拟[J]. 中国制造业信息化,2010,39(17):22.
62 Chen Luping, Pan Jingzhe, Qian Lingxi. The quasi parametric finite element numerical simulation of failure process at fibre-matrix interface of composite[J]. Acta Mater Compos Sin,1993,10(1):71(in Chinese).
陈陆平, 潘敬哲, 钱令希. 复合材料纤维/基体界面失效问题的参变量有限元数值模拟[J]. 复合材料学报,1993,10(1):71.
63 Wu Chenwu, Chen Guangnan, Zhangkun, et al. Analysis on the interfacial stresses for a coating and substrate system[J]. Chinese J Solid Mechanics,2006, 27(2):203(in Chinese).
吴臣武, 陈光南, 张坤, 等. 涂层/基体体系的界面应力分析[J]. 固体力学学报,2006,27(2):203.
64 Shi Z, Ramalingam S. Thermal and mechanical stresses in transversely isotropic coatings[J]. Surf Coat Technol,2001,138(2):173.
65 Guo Yimu, Lan Weiming. An analytic solution of substrate bonded with surface coatings[J]. Chinese J Eng Design,2001(4):165(in Chinese).
郭乙木, 蓝伟明. 表面涂层系统与基底结合的一种解析分析方法[J]. 工程设计学报,2001(4):165.
66 Zhang Yongkang, Kong Dejun, Feng Aixin, et al. Study on the determination of interfacial binding strength of coatings (Ⅰ): Theore-tical analysis of stress in thin film binding interface[J]. Acta Phys Sin,2006,55(6):2897(in Chinese).
张永康, 孔德军, 冯爱新, 等. 涂层界面结合强度检测研究 (Ⅰ): 涂层结合界面应力的理论分析[J]. 物理学报,2006,55(6):2897.
67 Ogawa S, Cho H, Yamanaka K, et al. Property evaluation of vapor-deposited TiN film by the analysis of elastic waves.(2nd Report, film strength estimated by AE source inversion during compressive loading)[J]. JSME Int J Series A Solid Mechan Mater Eng,1998,41(3):446.
68 Zhang Yongkang, Kong Dejun, Feng Aixin, et al. Study on the determination of interfacial binding strength of coatings (Ⅱ): Detecting system of bonding strength[J]. Acta Phys Sin,2006,55(11):6008(in Chinese).
张永康, 孔德军, 冯爱新, 等. 涂层界面结合强度检测研究(Ⅱ): 涂层结合界面应力检测系统[J]. 物理学报,2006,55(11):6008.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[5] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[6] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[7] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[8] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[9] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[10] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[11] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[12] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[13] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[14] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[15] 陈伟, 邱长军, 闫梦达, 贺沅玮, 张净宜, 齐林森. 添加松香和淀粉对铁基合金粉末激光成形试样组织和力学性能的影响[J]. 材料导报, 2019, 33(11): 1848-1852.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed