Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 22030166-5    https://doi.org/10.11896/cldb.22030166
  金属与金属基复合材料 |
激光深熔焊匙孔及焊接飞溅行为的数值模拟
彭进1,2,3,*, 许红巧1, 王星星1, 龙伟民2, 张永振3, 于晓凯4
1 华北水利水电大学材料学院,郑州 450045
2 中国机械总院集团宁波智能机床研究院有限公司,浙江 宁波 315700
3 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023
4 洛阳轴承研究所有限公司,河南 洛阳 471039
Numerical Simulation of Keyhole and Welding Spatter Behavior in Laser Deep Penetration Welding
PENG Jin1,2,3,*, XU Hongqiao1, WANG Xingxing1, LONG Weimin2, ZHANG Yongzhen3, YU Xiaokai4
1 Material College, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2 China Academy of Machinery Ningbo Academy of Intelligent Machine Tool Co., Ltd., Ningbo 315700, Zhejiang, China
3 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
4 Luoyang Bearing Research Institute Co., Ltd., Luoyang 471039, Henan, China
下载:  全 文 ( PDF ) ( 30961KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作借助激光焊接热-流耦合有限元模型,研究了激光深熔焊匙孔、焊接飞溅三维瞬态行为及熔池流场。研究结果表明,激光深熔焊过程中匙孔壁前方和后方都会产生焊接飞溅,匙孔壁后方焊接飞溅形成的过程中,匙孔底部易出现被挤压闭合的情况。焊接飞溅的形成经历了熔池表面出现小尺寸的液态金属隆起,形成液柱,液柱长大,液态金属与液柱分离形成飞溅的过程。匙孔前方产生焊接飞溅的熔体最大流速明显大于匙孔后方。由匙孔开口处到匙孔底部,熔池各个点的流动速度逐渐下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭进
许红巧
王星星
龙伟民
张永振
于晓凯
关键词:  激光焊接  匙孔  焊接飞溅    
Abstract: In this work, the three-dimensional transient behavior of welding spatters, keyhole and weld pool flow field in laser deep penetration welding were studied by using the heat flow coupling finite element model of laser welding. The results show that weld spatter occured both in front of and behind the keyhole wall during laser penetration welding. During the formation of welding spatter behind the keyhole wall, the bottom of the keyhole was prone to be squeezed and closed. The formation of welding spatter was a process in which small-sized liquid metal bulges appeared on the surface of the molten pool, forming a liquid column, the liquid column growed, and the liquid metal separated from the liquid column to form a spatter. The maximum flow rate of the melt producing welding spatter in front of the keyhole was significantly higher than that behind the keyhole. From the opening of the keyhole to the bottom of the keyhole, the flow velocity at each point of the molten pool decreased gradually.
Key words:  laser welding    keyhole    welding spatter
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TG456.7  
基金资助: 河南省科技研发联合基金(产业类)(225101610002);河南省高等学校重点科研项目(24A460017);浙江省“尖兵”“领雁”研发攻关计划(2022C01187);河南省博士后科研项目(202003076);2025年度河南省重点研发与推广专项(科技攻关项目)
通讯作者:  *彭进,博士,华北水利水电大学材料学院副教授、硕士研究生导师。目前主要从事激光、电弧焊接工艺及数值模拟等方面的研究工作。pengjin@ncwu.edu.cn   
引用本文:    
彭进, 许红巧, 王星星, 龙伟民, 张永振, 于晓凯. 激光深熔焊匙孔及焊接飞溅行为的数值模拟[J]. 材料导报, 2025, 39(3): 22030166-5.
PENG Jin, XU Hongqiao, WANG Xingxing, LONG Weimin, ZHANG Yongzhen, YU Xiaokai. Numerical Simulation of Keyhole and Welding Spatter Behavior in Laser Deep Penetration Welding. Materials Reports, 2025, 39(3): 22030166-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030166  或          http://www.mater-rep.com/CN/Y2025/V39/I3/22030166
1 Li S, Chen G, Zhang M, et al. Journal of Materials Processing Technology, 2014, 214, 565.
2 Peng J, Wang X X, Li G, et al. Chinese Journal of Lasers, 2017, 44(11), 1102004(in Chinese).
彭进, 王星星, 李刚, 等. 中国激光, 2017, 44(11), 1102004.
3 Cai H, Xiao R S. Transactions of the China Welding Institution, 2013, 34(2), 27(in Chinese).
蔡华, 肖荣诗. 焊接学报, 2013, 34(2), 27.
4 Wang J, Wang C, Meng X, et al. Optics & Laser Technology, 2012, 44, 67.
5 Li S, Chen G, Zhang M, et al. Journal of Materials Processing Technology, 2014, 214, 565.
6 Wang J, Wang C, Meng X, et al. Optics & Laser Technology, 2012, 44, 67.
7 Kaplan A F H, Powell J. Journal of Laser Applications, 2011, 23, 032005.
8 Zhang M J, Chen G Y, Zhou Y, et al. Applied Surface Science, 2013, 280, 868.
9 Zhang G L, Kong H, Zou J L, et al. Chinese Journal of Lasers, 2021, 48(22), 2202008(in Chinese).
张高磊, 孔华, 邹江林, 等. 中国激光, 2021, 48(22), 2202008.
10 Hugger F, Hofmann K, Kohl S, et al. Weld World, 2015, 59, 165.
11 Zhang D B, Li C L, Liu X X, et al. Journal of Manufacturing Processes, 2018, 31, 72.
12 Peng J, Hu S M, Wang X X, et al. Chinese Journal of Lasers, 2018, 45(1), 0102003(in Chinese).
彭进, 胡素梦, 王星星, 等. 中国激光, 2018, 45(1), 0102003.
13 Peng J, Xu H Q, Yang X H, et al. Crystals, 2022, 12, 873.
14 Heider A, Sollinger J, Abt F, et al. Physics Procedia, 2013, 41, 112.
15 Wu D S, Hua X M, Li F, et al. International Journal of Heat and Mass Transfer, 2017, 113, 730.
[1] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[4] 李昂, 曾一达, 李智勇, 贺荣, 郭正华, 陈玉华, 江一, 杨子睿. 双相钢与铝合金异种金属激光焊接技术研究进展[J]. 材料导报, 2024, 38(22): 23090075-9.
[5] 张忠科, 蒋常铭, 李轩柏, 熊建强, 童辉. 汽车用铝钢无匙孔搅拌摩擦点焊接头组织及界面特征研究[J]. 材料导报, 2023, 37(5): 21070281-6.
[6] 陈轩, 李萌蘖, 卜恒勇, 左汉宁. 7系铝合金焊接技术的研究现状及展望[J]. 材料导报, 2023, 37(13): 21010106-9.
[7] 时尚, 刘丰刚, 黄春平, 舒宗富. 激光复合热源焊接技术的研究进展[J]. 材料导报, 2022, 36(11): 20100230-8.
[8] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[9] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[10] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[11] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[12] 彭进, 王星星, 杨嘉佳, 李勇, 王孝虎. 单束与双束串行激光填丝焊特性对比[J]. 材料导报, 2018, 32(16): 2822-2827.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed