Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20100230-8    https://doi.org/10.11896/cldb.20100230
  金属与金属基复合材料 |
激光复合热源焊接技术的研究进展
时尚, 刘丰刚, 黄春平, 舒宗富
南昌航空大学轻合金加工科学与技术国防重点学科实验室, 南昌 330063
Research Progress of Laser Hybrid Heat Source Welding Technology
SHI Shang, LIU Fenggang, HUANG Chunping, SHU Zongfu
National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 3211KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光焊接作为一种高质量的熔接工艺,是比较成熟的制造技术,但能量转换效率低、间隙桥接差等缺陷限制了其进一步发展。为解决上述问题,近年来多种激光复合热源焊接技术不断涌现。激光复合热源焊接技术是激光束与其他热源复合,通过两种热源的协同效应,弥补单纯激光焊接的不足之处,通过焊接单一热源难以完成的接头形式,来获得单热源难以达到的高效焊接效果。激光复合热源焊接技术具有焊接速度快、焊接质量好等优势,在汽车、航空航天和造船等行业拥有广阔的工程应用前景。然而,由于其他热源种类繁多且与激光束相互作用方式各不相同,探讨并总结激光复合热源焊接技术在焊接过程中独特优势的本质,可以为该技术在日后的工程应用中提供理论支撑。本文首先回顾了激光焊接技术的发展进程,然后介绍了激光和电弧热源、激光与电阻热源、激光与摩擦热源复合焊接在工艺参数、微观组织性能方面的研究,最后指出了激光复合热源焊接技术未来的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
时尚
刘丰刚
黄春平
舒宗富
关键词:  激光束  复合热源  复合焊接技术  激光焊接    
Abstract: Laser welding, as a high-quality fusion welding process, is considered as a mature material processing technology; however, the low energy conversion efficiency and poor seam bridging limit its further development. To overcome the above-mentioned disadvantages, various laser hybrid heat source welding technologies, which are the hybrid of laser beam and other heat sources, have emerged in recent years. The disadvantages associated with the pure laser welding can be overcome by the collaboration of two heat sources, and high efficiency can be obtained by the hybrid of two different heat sources, which is difficult to obtain by a single hear source. Laser hybrid heat source welding technology has the advantages of high welding speed and good welding quality, and thus it has broad engineering application prospects in automotive, aerospace, and shipbuilding industries. However, several heat sources interact with the laser beam in different ways. Therefore, to explore and summarize the nature of the unique advantages of laser hybrid heat source welding technology, theoretical support should be provided. This paper reviews the development process of laser welding technology; then, it introduces the process parameters, and investigates the microstructure and properties of hybrid laser and arc heat sources, the hybrid laser and resistance heat sources, and the hybrid laser and friction heat sources. Finally, the article discusses the future research areas of laser hybrid heat source welding technology.
Key words:  laser beam    hybrid heat source    hybrid welding technology    laser welding
发布日期:  2022-06-09
ZTFLH:  TG456.7  
基金资助: 江西省自然科学基金(20202BABL204039);南昌航空大学研究生创新专项资金(YC2020-020)
通讯作者:  hcp98106@163.com   
作者简介:  时尚,2019年6月毕业于青岛理工大学,获得工学学士学位。现为南昌航空大学航空制造工程学院硕士研究生。目前主要研究领域为激光增材制造及激光焊接。
黄春平,南昌航空大学航空制造工程学院教授、硕士研究生导师。2002年南昌航空大学金属材料与热处理专业本科毕业,2005年南昌航空大学材料加工工程专业硕士毕业,2020年西北工业大学材料学专业博士毕业,目前主要从事激光增材制造、搅拌摩擦焊等方面的研究工作,中国机械工程学会高级会员、中国焊接学会堆焊及表面工程专业委员会委员、中国焊接学会环境健康与安全专业委员会委员、江西省焊接学会理事兼副秘书长。为 Journal of Alloys and Compounds、Materials & Design、复合材料学报》《材料导报》等杂志的审稿人。发表了60余篇科技论文,其中SCI、EI检索30余篇。
引用本文:    
时尚, 刘丰刚, 黄春平, 舒宗富. 激光复合热源焊接技术的研究进展[J]. 材料导报, 2022, 36(11): 20100230-8.
SHI Shang, LIU Fenggang, HUANG Chunping, SHU Zongfu. Research Progress of Laser Hybrid Heat Source Welding Technology. Materials Reports, 2022, 36(11): 20100230-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100230  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20100230
1 Zhong L H, Tan Z, Zhen X, et al. Key Engineering Materials, 2019,815, 5987.
2 Oliveira J P, Santos T G, Miranda R M. Progress in Materials Science, 2020, 107(C), 100590.
3 Hashmi S, Choudhury I A. Journal of Materials Processing Technology, 2020,4, 523.
4 Heo G H, Choi S W, LeeI O. EPE Journal, 2020,30(3),139.
5 Wu H Y, Jiang F, Wang S L, et al. Journal of Physics: Conference Series, 2021,1748(5), 052026.
6 Majumdar J D, Manna I.International Materials Reviews, 2011, 56(5-6),341.
7 Torkamany M J , Malek Ghaini F, Poursalehi R. Materials & Design, 2014,53,915.
8 Oliveira J P, Zeng Z, Berveiller S, et al.Materials & Design, 2018, 148,145.
9 Wu J Z, Zhang H, Li Y L, et al. Journal of Welding,2018,39(2),39(in Chinese).
吴家洲,张华,李玉龙,等.焊接学报,2018,39(2),39.
10 Svenungsson J, Choquet I, Kaplan A F H. Physics Procedia, 2015, 78,182.
11 Debroy T, Wei H L, Zuback J S, et al.Progress in Materials Science, 2018, 92,112.
12 Liu F, Tan C, Gong X, et al.Optics & Laser Technology, 2020, 128,106247.
13 Li G, Gao M, Chen C, et al.Science and Technology of Welding and Joining, 2014, 19(1),30.
14 Li R, Li Z, Zhu Y, et al.Materials Science & Engineering A, 2011, 528(3),1138.
15 Wang C M,Hu L J,Hu X Y, et al.Laser Technology, 2004, 28(5),452(in Chinese).
王春明,胡伦骥,胡席远,等.激光技术,2004, 28(5),452.
16 Oyyaravelu R, Kuppan P, Arivazhagan N.Materials Today: Proceedings, 2018, 5(5),12693.
17 Meng Y, Kang K, Gao M, et al.Journal of Manufacturing Processes, 2018, 36,293.
18 Li L, Xia H, Ma N, et al.Journal of Manufacturing Processes, 2018, 34,678.
19 Zhang L J, Bai Q L, Ning J, et al.Materials & Design, 2016,110,35.
20 Lee C M, Woo W S, Baek J T, et al.International Journal of Precision Engineering and Manufacturing, 2016, 17(7), 973.
21 Gao Z, Jiang P, Wang C, et al.The International Journal of Advanced Manufacturing Technology, 2016, 88(1-4), 483.
22 Ma Z H, Chen D G, Li N, et al. Laser Technology, 2012, 36(6), 780(in Chinese).
马志华,陈东高,李娜,等.激光技术,2012, 36(6), 780.
23 Emmelmann C, Kirchhoff M, Petri N.Physics Procedia, 2011, 12, 194.
24 Möller F, Thomy C.Physics Procedia, 2013, 41, 81.
25 Wang L, Chen J, Wu C, et al.Journal of Materials Processing Technology, 2016, 237, 342.
26 Huang J K,Sun T L,Fen D,et al.Journal of Mechanical Engineering,2016, 52(18), 31(in Chinese).
黄健康,孙天亮,樊丁,等.机械工程学报, 2016, 52(18), 31.
27 Huang L, Chen X Z, Sergey K, et al. Metals, 2021,11(2), 267.
28 Scotti F M, Jorge V L, Reis R P, et al. Journal of Manufacturing Processes, 2021, 62, 655.
29 Liu J, Bai C M, Shi Y,et al. Journal of Mechanical Engineering, 2018, 54(22), 55(in Chinese).
刘佳,白陈明,石岩,等.机械工程学报,2018, 54(22),55.
30 Liu S, Zhang F, Dong S, et al.International Journal of Heat and Mass Transfer, 2018, 121, 805.
31 Cornacchia G, Cecchel S, Tocci M, et al.Metallography, Microstructure, and Analysis, 2020,9(4), 511.
32 Wen P, Li Z X, Zhang S, et al.Chinese Journal of Lasers, 2020, 47(8), 61(in Chinese).
温鹏,栗忠秀,张松,等.中国激光,2020, 47(8), 61.
33 Li Z X, Wen P, Zhang S, et al.Chinese Journal of Lasers, 2020, 47(9),1(in Chinese).
栗忠秀,温鹏,张松,等.中国激光, 2020, 47(9), 1.
34 Lei Z L, Li B W, Zhu P G, et al.Chinese Journal of Lasers, 2018, 45(10), 103(in Chinese).
雷正龙,黎炳蔚,朱平国,等.中国激光, 2018, 45(10), 103.
35 Lei Z L, Li B W, Bi J, et al.Optics and Laser Technology, 2019,120, 105728.
36 Chen H C, Ng F L, Du Z.Journal of Manufacturing Processes, 2019, 47, 324.
37 Šebestová H, Horník P, Mrňa L, et al.Materials Science and Enginee-ring: A, 2020, 772, 138780.
38 Huang R S, Yang Y C, Jiang B, et al.Journal of Welding, 2019, 40(12), 73(in Chinese).
黄瑞生, 杨义成, 蒋宝, 等.焊接学报, 2019, 40(12), 73.
39 Yang D W, Chen S H, Huang J H, et al.Journal of Welding, 2017, 38(10), 51(in Chinese).
杨大伟, 陈树海, 黄继华, 等.焊接学报, 2017, 38(10), 51.
40 Gao M, Mei S, Wang Z, et al.Journal of Materials Processing Technology, 2012, 212(6), 1338.
41 Feng C, Zhu J L, Jiao X D, et al.Hot Working Technology, 2020, 49(7), 48(in Chinese).
冯聪,朱加雷,焦向东,等.热加工工艺,2020,49(7), 48.
42 Yao W, Gong S L, Chen L.Journal of Welding,2006, 27(9), 81(in Chinese).
姚伟,巩水利, 陈俐. 焊接学报, 2006, 27(9), 81.
43 Nilsson K, Heimbs S, Engstrm H, et al. In: 56th Annual Assembly of the International Institute of Welding. Romania, 2003, pp. 843.
44 Liu C T, Hu L M, Zhang X H, et al. Hot Working Technology, 2016, 45(11), 250(in Chinese).
刘春涛,胡连海,张小红,等.热加工工艺, 2016, 45(11), 250.
45 Shi J, Song G, Chi J.International Journal of Lightweight Materials and Manufacture, 2018, 1(1), 47.
46 Shi J P, Wang H Y, Yang L B,et al.Journal of Welding, 2017, 38(2), 61(in Chinese).
史吉鹏, 王红阳, 杨林波,等.焊接学报, 2017, 38(2), 61.
47 Zhang H T,Wu C S.Aeronautical Manufacturing Technology, 2016(19), 45(in Chinese).
张皓庭, 武传松.航空制造技术, 2016(19), 45.
48 Song G, Yu P N, Li T T, et al.Chinese Journal of Lasers, 2020,47(6), 116(in Chinese).
宋刚,于培妮,李涛涛,等.中国激光,2020, 47(6), 116.
49 An F P, Gong Q L, Xu G X, et al.Materials (Basel, Switzerland),2020, 13(23), 5307.
50 Perulli P, Assisti M D, Casalino G.Materials, 2020, 13(9), 2088.
51 Zhang W H, Li Y Q, Zhao X H,et al. Welding, 2007, 11(6), 15(in Chinese).
张伟华,李永强,赵熹华, 等. 焊接, 2007, 11(6), 15.
52 Sun R, Shi Y, Wang X, et al.Journal of Materials Research and Techno-logy, 2020, 9(3), 2773.
53 Zhang X G, Li L Q, Chen Y B,et al. Infrared and Laser Engineering, 2010, 39(1), 138(in Chinese).
张新戈, 李俐群, 陈彦宾, 等.红外与激光工程, 2010, 39(1), 138.
54 Lei Z L, Chen Y B, Guo X J. Aerospace Manufacturing Technology, 2010, 2(5), 10(in Chinese).
雷正龙,陈彦宾,郭新建.航天制造技术, 2010, 2(5), 10.
55 Li Y Q, Zhao H, Zhao X H, et al. Journal of Welding, 2009, 30(4), 29(in Chinese).
李永强,赵贺,赵熹华,等.焊接学报,2009, 30(4), 29.
56 Zhang J, Feng X S, Xu H, et al. Journal of Welding, 2018, 39(8), 82(in Chinese).
张婧,封小松,许辉,等.焊接学报,2018, 39(8), 82.
57 Kohn G, Greenberg Y, Makover I, et al.Welding Journal, 2002, 81(2), 46.
58 Bang H S, Bang H S, Kim H S, et al. Journal of Welding and Joining, 2010, 28(6), 70.
59 Xie S, Li R, Yuan T, et al.Optics & Laser Technology, 2018, 99, 374.
60 Zhang J, Feng X S, Xu H, et al. Journal of welding, 2018,39(7), 102(in Chinese).
张婧,封小松,许辉,等.焊接学报, 2018,39(7), 102.
61 Wada T, Morisada Y, Sun Y F, et al. ISIJ International, 2020, 60(1), 153.
62 Fei X, Jin X, Ye Y, et al.Materials Science and Engineering: A, 2016, 653, 43.
63 Mousavizade S M, Pouranvari M, Malek G F, et al.Journal of Alloys and Compounds, 2016, 685, 806.
64 Fei X, Wu Z.Results in Physics, 2018, 11, 1048.
65 Xie S, Li R, Yuan T, et al.Surface and Coatings Technology, 2018, 337, 426.
[1] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[2] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[3] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[4] 彭进, 王星星, 杨嘉佳, 李勇, 王孝虎. 单束与双束串行激光填丝焊特性对比[J]. 材料导报, 2018, 32(16): 2822-2827.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed