MATERIALS AND SUSTAINABLE DEVELOPMENT: ADVANCED MATERIALS FOR CLEAN ENERGY UTILIZATION |
|
|
|
|
|
Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles |
Laima LUO1,2( ),Mengyao XU1,Xiang ZAN1,2,Xiaoyong ZHU2,3,Ping LI1,2,Jigui CHENG1,2,Yucheng WU1,2,3
|
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 2 Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 3 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei 230009 |
|
|
Abstract It is difficult and urgent task to develop a high-performance plasma facing materials for current nuclear fusion research by the irradiation behavior of PFMs, which is suitable for advanced experiment superconducting tokamak (EAST), international thermonuclear fusion reactor (ITER) and China fusion engineering experiment reactor (CFETR). Tungsten is considered to be the primary candidate for plasma facing materials in future fusion reactors owing to its superiority to other materials including high melting point, high thermal conductivity, low sputter corrosion rate, high sputtering threshold, low vapor pressure and low tritium inventory. In this paper, we review the research progress of damage of tungsten and tungsten alloy irradiated by various particles. The defects caused by irradiation are accumulate in tungsten and tungsten alloy. The formation and quantity of defects are closely related to the microstructure of the tungsten and the second phase components, the situation of defects are diverse. At the same time, the irradiation conditions, for instance, the kinds of particles, energy, flux and temperature, will also have an important impact on the morphology and defect of the irradiated sample.
|
Published: 10 January 2018
Online: 2018-01-10
|
|
|
|
Majorplasma parameters | Thenumberofparticlesand energyperunitarea | Maximumfluxofplasma | 1.0×1024/(m2·s) | Heatload | 5—10MW/m2 | Averageneutronwallload | 0.56(0.8)MW/m2 | Temperatureofplasmasurface | 200—1000℃ |
|
The suffered irradiation PFM in fusion reactors[6]
|
|
TEM micrographs of the irradiated ultrafine-grainedtungsten sample:(a) several rod-shape nanostructures,(b) high resolution image of a rod-shape nanostructure,(c) region of bubbles in between two rod-shape nanostructures,(d) region of ~10 nm below the sample surface
|
|
Cross-sectional SEM images of W specimens irradiatedwith different He+ fluxes:(a) 2.3 × 1021/(m2·s),(b) 5.4×1021/(m2·s),(c) 7.7×1021/(m2·s),(d) 1.0×1022/(m2·s),(e) 1.3×1022/(m2·s),(f) 1.6×1022/(m2·s)
|
|
Surface morphology of samples post-irradiated bymixed H+-C+ beam:(a) undamaged,(b) damaged by300 keV H-,(c) damaged by 700 keV H-
|
|
TEM images of unirradiated specimens:(a) pure W,(b) La-doped W,(c) K-doped W,(d) UFG W-0.5TiC/H
|
|
TEM images of irradiated specimens:(a) pure W,(b) La-doped W,(c) K-doped W,(d) UFG W-0.5 TiC/H
|
|
HRTEM images of tungsten after irradiation:(a) grainwith both α and β phase,(b) coarsened grain with α phaseafter 30 dpa irradiation,(c,d) vacancy of the interior regionof coarsened grain,(e) 100 dpa irradiation
|
|
STEM bright field damaged zone image of the0.89 dpa damaged sample
|
[1] | Jef O, Yuichi O . Nuclear fusion: Status report and future prospects[J]. Energy Policy, 2016,96:770. | [2] | Wang Shuang LuoLaima , ZhaoMei ling, , et al. Current status and development trend of toughening technology of tungsten-based materials[J]. Chinese Journal of Rare Metals, 2015,39(8):741(in Chinese). | [2] | 王爽, 罗来马, 赵美玲 , 等. 钨基材料强韧化技术的现状与发展趋势[J]. 稀有金属, 2015,39(8):741. | [3] | Tanabe T, Wada M, Ohgo T , et al. Application of tungsten for plasma limiters in TEXTOR[J]. Journal of Nuclear Materials, 2013, 283-287:1128. | [4] | Ding Xiaoyu, Luo Laima, Huang Limei . Research progress in irradiation damage of tungsten and tungsten alloys for nuclear fusion reactor[J]. Chinese Journal of Rare Metals, 2015,39(12):1139(in Chinese). | [4] | 丁孝禹, 罗来马, 黄丽枚 , 等. 核聚变堆用钨及钨合金辐照损伤研究进展[J]. 稀有金属, 2015,39(12):1139. | [5] | Luo Laima , LuZelong,LiHao,etal.Current status and development trend on rare earth modified tungsten alloys[J]. Chinese Journal of Rare Metals, 2013,37(6):993(in Chinese). | [5] | 罗来马, 罗泽龙, 李浩 , 等. 稀土改性钨合金的研究现状与发展趋势[J]. 稀有金属, 2013,37(6):993. | [6] | Aymar R . Status of ITER[J]. Fusion Engineering and Design, 2002,61:5. | [7] | Pitts R A , et al. Physics basis and design of the ITER plasma-facing components[J]. Journal of Nuclear Materials, 2011,415:S957. | [8] | Neu R, Rohde V , Gerier A. Plasma operation with tungsten tiles at the central column of ASDEX upagrade[J]. Journal of Nuclear Materials, 2001, 290- 293:206. | [9] | Shimada M, Costley A E, Federici G, et al. Overview of goals and performance of ITER and strategy for plasma-wall interaction investigation[J]. Journal of Nuclear Materials, 2005, 337- 339:808. | [10] | HuYuanchao, Cao Xingzhong, Li Yuxiao , et al. Applications and progress of slow positron beam technique in the study of metal/alloy microdefects[J]. Acta Physics Science, 2015,64(24):247804(in Chinese). | [10] | 胡远超, 曹兴忠, 李玉晓 , 等. 慢正电子束流技术在金属/合金微观缺陷研究中的应用[J]. 物理学报, 2015,64(24):247804. | [11] | 11El-Atwani O, Gonderman S, Suslov S , et al. Early stage damage of ultrafine-grained tungsten materials exposedto low energy helium ion irradiation[J]. Fusion Engineering and Design, 2015,93:9. | [12] | LiuLu, Liu Dongping, Hong Yi , et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions[J]. Journal of Nuclear Materials, 2016,471:1. | [13] | TanXiaoyue, Luo Laima, Chen Hongyu , et al. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation[J]. Scientific Reports, 2015,12755:1. | [14] | WangWenmin, Roth J, Lindig S , et al. Blister formation of tungsten due to ion bombardment[J]. Journal of Nuclear Materials, 2001,299:124. | [15] | RionA Causey . Hydrogen isotope retention and recycling in fusion reactor plasma-facing components[J]. Journal of Nuclear Materials, 2002,300:91. | [16] | HaaszA A, Davis J W, Poon M , et al. Deuterium retention in tungsten for fusion use[J]. Journal of Nuclear Materials, 1998, 258- 263:889. | [17] | HaaszA A, Poon M, Davis J W , et al. The effect of ion damage on deuterium trapping in tungsten[J]. Journal of Nuclear Materials, 1999, 266- 269:520. | [18] | FukumotoM, Kashiwagi H, Ohtsuka Y , et al. Hydrogen behavior in damaged tungsten by high-energy ion irradiation[J]. Journal of Nuclear Materials, 2009, 386- 388:768. | [19] | YukiSakoi, Mitsutaka Miyamoto, Kotaro Ono , et al. Helium irradiation effects on deuterium retention in tungsten[J]. Journal of Nuclear Materials , 2013,442:S715. | [20] | NobutaY, Hatano Y, Matsuyama M , et al. Helium irradiation effects on tritium retention and long-term tritium release properties in polycrystalline tungsten[J]. Journal of Nuclear Materials, 2015,463:993. | [21] | SteichenJ M . Tensile properties of neutron irradiated TZM and tungsten[J]. Journal of Nuclear Materials, 1976,60:13. | [22] | MakotoFukuda, Akira Hasegawa, Takashi Tanno , et al. Property change of advanced tungsten alloys due to neutron irradiation[J]. Journal of Nuclear Materials, 2013,442:S273. | [23] | AkiraHasegawa, Takashi Tanno ShuheiNogami, , et al. Property change mechanism in tungsten under neutron irradiation in various reactors[J]. Journal of Nuclear Materials, 2011,417:491. | [24] | AkiraHasegawa, Makoto Fukuda KiyohiroYabuuchi, , et al. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys[J]. Journal of Nuclear Materials, 2016,471:175. | [25] | AkiraHasegawa, Makoto Fukuda , ShuheiNogami, et al. Neutron irradiation effects on tungsten materials[J]. Fusion Engineering and Design, 2014,89:1568. | [26] | OgorodnikovaO V, Tyburska B, Alimov V Kh , et al. Neutron irradiation effects on tungsten materials[J]. Journal of Nuclear Materials, 2011,415:S661. | [27] | AhmatPolat, Fan Zhiguo, Luo Qi , et al. High-dose neutron induced radiation swelling simulated by heavy ion irradiation and its microscopic study with positron annihilation technique[J]. Nuclear Science and Techniques, 2011,11(1):52. | [28] | Tyburska-Püschel M H J ’t Hoen, Ertl K, Maye M , et al. Saturation of deuterium retention in self-damaged tungsten exposed to high-flux plasmas[J]. Nuclear Fusion, 2012,52(2):023008. | [29] | ArmstrongD E J, Yi X, Marquis E A , et al. Hardening of self ion implanted tungsten and tungsten 5wt% rhenium[J]. Journal of Nuclear Materials, 2013,432(1-3):428. | [30] | FukumotoM, Kashiwagi H, Ohtsuka Y , et al. Deuterium trapping in tungsten damaged by high-energy hydrogen ion irradiation[J]. Journal of Nuclear Materials, 2009, 390- 391(1):572. | [31] | ZhengYongnan, Zuo Yi, Zhou Dongmei , et al. Dose dependence of radiation damage in W studied by heavy ion irradiation simulation[J]. Nuclear Physics Review, 2006,23(2):207(in Chinese). | [31] | 郑永男, 左翼, 周冬梅 , 等. 钨辐射损伤随辐照剂量变化的重离子辐照模拟研究[J]. 原子核物理评论, 2006,23(2):207. | [32] | WangHongwei, Gao Yuan, Fu Engang , et al. Effect of high fluence Au ion irradiation on nanocrystalline tungsten film[J]. Journal of Nuclear Materials, 2013,442:189. | [33] | Ciupiηski ?, Ogorodnikova O V , et al. TEM observations of radiation damage in tungsten irradiated by 20 MeV W ions[J]. Nuclear Instruments and Methods in Physics Research B, 2013,317:159. | [34] | SinelnikovD, Kurnaev V, Kolodko D , et al. Modification of nanostructured tungsten surface by ion beam irradiation[J]. Physics Procedia, 2015,71:73. | [35] | WangMingyang, Fusion high-heat flux testing on tungsten first wall materials by high-intensity pulsed pulsed particle beam irradiation[D]. Dalian: Dalian University of technology, 2013(in Chinese). | [35] | 王明阳 . 强流脉冲粒子束辐照钨第一壁材料模拟核聚变高热负荷实验研究[D]. 大连:大连理工大学, 2013. | [36] | ChenJianxun, Zheng Zhenhua, Wang Dezhi , et al. Analysis of ion-irradiated carbon film on tungsten[J]. Nuclear Techniques, 2000,23(7):503(in Chinese). | [36] | 陈剑宣, 郑振华, 汪德志 , 等. 离子辐照钨基上碳薄膜微结构的分析[J]. 核技术, 2000,23(7):503. |
|
|
|
|