Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 325-329    https://doi.org/10.11896/cldb.201902023
  金属与金属基复合材料 |
紫铜/304不锈钢激光焊接接头显微组织及力学性能
陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军
广东省焊接技术研究所(广东省中乌研究院),广东省现代焊接技术重点实验室,广州 510650
Microstructure and Mechanical Properties of Copper/304 Stainless Steel Joints
Welded by Laser Beam
CHEN Yongcheng, LUO Ziyi, ZHANG Yupeng, YI Yaoyong, LI Mingjun
Guangdong Provincial Key Laboratory of Advanced Welding Technology, Guangdong Welding Institute (China-Ukraine E.O.Paton Institute of Welding, Guangzhou 510650
下载:  全 文 ( PDF ) ( 4205KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用碟片激光器制备了5 mm厚紫铜/304不锈钢激光焊接接头,研究了光束偏移量对焊接接头显微组织和力学性能的影响。结果表明,光束偏移量为-0.2~0 mm时,焊缝显微组织以奥氏体基体为主,焊缝奥氏体基体上的富Cu相形貌为球状和线状,焊缝裂纹沿着奥氏体基体上的线状富Cu相扩展。光束偏移量为0.2~0.4 mm时,焊缝显微组织以Cu基体为主,奥氏体基体上的线状富Cu相数量减少,能有效抑制焊缝裂纹的产生。焊缝Cu基体上的富Fe相形貌以球状为主,还有少量树枝晶状。光束偏移值为-0.2~0.2 mm时,接头抗拉强度和延伸率分别可达紫铜母材的95.6% 和39.3%,都断裂在紫铜热影响区,光束偏移值为0.4 mm时,接头抗拉强度和延伸率较紫铜母材明显下降,抗拉强度和延伸率分别为紫铜母材的71.9%和 23.6%,断裂在焊缝。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈永城
罗子艺
张宇鹏
易耀勇
李明军
关键词:  激光焊接  紫铜  304不锈钢  显微组织  力学性能    
Abstract: The Copper/304 stainless steel joints with a thickness of 5mm are fabricated by disk laser,the microstructure and mechanical properties of the laser beam welded Copper/304 stainless steel joints are investigated. Results show that the microstructure of the weld is dominated by austenite matrix when the offset distance of laser beam is -0.2~0 mm, and the Cu-rich phase embedded in the austenite matrix of the weld is glo-bular and filiform and the weld crack expands along filiform Cu-rich phase embedded in the austenite. The microstructure of the weld is dominated by Cu matrix when the offset distance of laser beam is 0.2~0.4 mm, and the number of filiform Cu-rich phase embedded in the austenite decreases and the occurrence of the weld crack is effectively inhabited. The Fe-rich phase embedded in the Cu matrix of the weld is mainly globular, and has a small amount of dendrites when the offset distance of laser beam is -0.2~0.4 mm. The welded joints fracture in the copper HAZ when the offset distance of laser beam is -0.2~0.2 mm, the tensile strength and the elongation of welded joints can reach 95.6% and 39.3% of those of the copper base metal respectively. The welded joints fracture in the weld metal when the offset distance of laser beam is 0.4 mm, the tensile strength and the elongation of welded joints are 71.9% and 23.6% of those of the copper base metal respectively.
Key words:  laser welding    copper    304 stainless steel    microstructure    mechanical properties
                    发布日期:  2019-01-31
ZTFLH:  TG456.7  
基金资助: 广东省科技计划项目(2017A010102008);广东省引进创新科研团队计划资助项目(201101C0104901263);广东省科技计划项目(2016B050501002);广东省科技计划项目(2017A070701026)
作者简介:  陈永城,广东省焊接技术研究所(广东省中乌研究院)工程师,主要从事激光焊接方面的研究,发表论文6篇,申请发明及实用新型专利5个,授权2个,作为主要申请人,申请并参与多个广东省科技计划项目。sanchc@126.com
引用本文:    
陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
CHEN Yongcheng, LUO Ziyi, ZHANG Yupeng, YI Yaoyong, LI Mingjun. Microstructure and Mechanical Properties of Copper/304 Stainless Steel Joints
Welded by Laser Beam. Materials Reports, 2019, 33(2): 325-329.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902023  或          http://www.mater-rep.com/CN/Y2019/V33/I2/325
1 Guo S, Zhou Q, Kong J, et al. Vacuum,2016,128,205.
2 Zhang W Y, Zhou Z F. Welding Metallurgy And Metal Weldablility. China Machine Press, China,1987.
张文钺,周振丰.焊接冶金学与金属焊接性,机械工业出版社,1987.
3 Chen S, Huang J, Xia J, et al. Journal of Materials Processing Technology,2015,222,43.
4 Phanikumar G, Manjini S, Dutta P, et al. Metallurgical and Materials Transactions A,2005,36(8),2137.
5 Mai T A, Spowage A C. Materials Science and Engineering: A,2004,374(1),224.
6 Li Y, Hu S S, Shen J Q. Chinese Journal of Lasers,2014,41(7),93(in Chinese).
李扬,胡绳荪,申俊琦.中国激光,2014,41(7),93.
7 Nakagawa Y. Acta metallurgica,1958,6(11),704.
8 Magnabosco I, Ferro P, Bonollo F, et al. Materials Science and Engineering: A,2006,424(1),163.
9 He J, Zhao J. Acta Metallrugica Sinica,2005,41(4),407(in Chinese).
何杰,赵九洲.金属学报,2005,41(4),407.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed