Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 330-334    https://doi.org/10.11896/cldb.201902024
  金属与金属基复合材料 |
气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响
徐强, 洪悦, 李楠, 伍翠兰
湖南大学材料科学与工程学院,长沙 410082
Effect of NH3 and CO Flow of Gas Nitrocarburizing on Microstructure and
Properties of Nitrocarburized Layers of Low-carbon Steel
XU Qiang, HONG Yue, LI Nan, WU Cuilan
College of Material Science and Engineering,Hunan University,Changsha 410082
下载:  全 文 ( PDF ) ( 5139KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调控气体氮碳共渗过程中的NH3和CO流量来调控气氛中的氮化势和碳势,从而调控共渗层的微观组织和性能。采用扫描电镜、X射线衍射仪、显微硬度计和电化学分析仪研究了气体氮碳共渗过程中的NH3和CO流量对低碳钢氮碳共渗层的微观组织结构及其性能的影响。研究结果表明:气体氮碳共渗气氛中,随着NH3流量的增加,化合物层厚度增大但致密性降低;随着CO流量的增加,化合物层致密性逐渐增大,但渗层厚度先增大后减小。氮碳共渗过程中C的加入可抑制γ′相的形成而促进ε相的产生,过量的C会形成θ相,但是C的渗入对渗层腐蚀性能影响较小。NH3和CO对氮碳共渗过程中的协同作用表现为,当NH3流量增加时,可相应增加CO流量来获得较厚、致密、耐腐蚀的化合物层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐强
洪悦
李楠
伍翠兰
关键词:  气体氮碳共渗  化合物层  相变  微观组织  性能    
Abstract: The microstructure and properties of the nitrocarburized layer are greatly affected by the nitriding potential and carbon potential in the atmosphere which can be directly controlled by the flow rate of NH3 and CO during nitrocarburizing. The effects of NH3 and CO flow on the microstructure and properties of the compound layer were investigated by scanning electron microscopy, X-ray diffractometer, microhardness tester and electrochemical analyzer. The results show that the thickness and porosity of the compound layer increases with the increasing NH3 flow du-ring gas nitrocarburizing. With the rising of CO flow, the compound layer becomes more compact, but the thickness of the compound layer increases first and then decreases. The addition of C in the nitrocarburized layer can restrain the formation of γ′ phase forming and promote the formation of ε phase. While the excess C would result in the emerging of θ phase. Fortunately, the permeated C show limited impact on the corrosion behavior of the compound layer. The combined effects of NH3 and CO on nitrocarburized layers can be realized through raising the flow rate of NH3 and the corresponding flow rate of CO appropriately, thus a thicker and compact compound layer with good corrosion-resistance can be formed successfully.
Key words:  gas nitrocarburizing    compound layer    phase transformation    microstructure    property
                    发布日期:  2019-01-31
ZTFLH:  TG156.8  
基金资助: 国家自然科学基金(11427806;51671082;51471067)
作者简介:  徐强,2018年6月毕业于湖南大学,获得材料学硕士学位。于2015年9月至2018年6月在湖南大学高分辨电镜中心学习低碳钢渗氮及氮碳共渗的工艺探索及微观表征。伍翠兰,湖南大学教授,博士研究生生导师。2005年6月毕业于华南理工大学,获得材料学博士学位。cuilanwu@hnu.edu.cn
引用本文:    
徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
XU Qiang, HONG Yue, LI Nan, WU Cuilan. Effect of NH3 and CO Flow of Gas Nitrocarburizing on Microstructure and
Properties of Nitrocarburized Layers of Low-carbon Steel. Materials Reports, 2019, 33(2): 330-334.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902024  或          http://www.mater-rep.com/CN/Y2019/V33/I2/330
1 Woehrle T, Leineweber A, Mittemeijer E J. Journal of Heat Treatment and Materials,2010,65(5),243.
2 Somers M A J, Mittemeijer E J. Surface Engineering,1987,63(3),123.
3 Dong J, Hoffmann F, Kluemper-Westkamp H, et al. Materials Perfor-mance & Characterization,2012,1(1),103926.
4 Li S, Manory R R. Metallurgical & Materials Transactions, 1996,27(1),135.
5 Middendorf C, Mader W. Zeitschrift Für Metallkunde,2013,94(3),333.
6 Hu M J, Pan J S, Mao L Z, et al. Heat Treatment of Metals,1997,5(1),3(in Chinese).
胡明娟,潘健生,毛立忠,等.金属热处理,1997,5(1),3.
7 Zhang D Y, Peng W Y, Fu Q F, et al. Heat Treatment of Metals,1998(10),26(in Chinese).
张德元,彭文屹,傅青峰,等.金属热处理,1998(10),26.
8 Ye X, Wu J, Zhu Y, et al.Vacuum,2014,110(110),74.
9 Chen F S, Chang C N. Surface & Coatings Technology,2003,173(1),9.
10 Xu W H, Xiao G Y, Jia Y M, et al. Transactions of Materials and Heat Treatment,2013,34(S2),194(in Chinese).
许文花,肖桂勇,贾永敏,等.材料热处理学报,2013,34(S2),194.
11 Wang J, Hong Y, Chen X Y, et al. Transactions of Materials and Heat Treatment,2016,37(8),168(in Chinese).
王津,洪悦,陈兴岩,等.材料热处理学报,2016,37(8),168.
12 Somers, Marcel A J. Comprehensive Materials Processing,2014,413,1.
13 Slycke J, Sproge L. Surface Engineering,1989,5(2),125.
14 Chen W L, Wu C L, Liu Z R, et al. Acta Materialia, 2013,61(11),3963.
15 Miao B, Li J C, Sun Q, et al. China Surface Engineering,2016,29(4),30(in Chinese).
缪斌,李景才,孙泉,等.中国表面工程,2016,29(4),30.
16 Spies H J. In: Thermochemical Surface Engineering of Steels. Woodhead,2015,pp.267.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[3] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[4] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[5] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[6] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[7] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[8] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[9] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[10] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[11] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[12] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[13] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[14] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[15] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed