Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1361-1366    https://doi.org/10.11896/cldb.18050021
  金属与金属基复合材料 |
冷轧变形量对5A02铝合金管材组织和性能的影响
王川, 李德富
北京有色金属研究总院,北京 100088
Effect of Cold Rolling Reduction on Microstructure and Properties of 5A02 Aluminum Alloy Tubes
WANG Chuan, LI Defu
General Research Institute for Nonferrous Metals, Beijing 100088
下载:  全 文 ( PDF ) ( 7140KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在室温下,对热挤压态5A02铝合金管材进行四种不同工艺参数(A~D)的两道次冷轧,四种工艺均将尺寸为Φ65.5 mm×5.5 mm(外径×壁厚,下同)的坯料冷轧成尺寸为Φ58 mm×2.5 mm的管材,总冷轧变形量为57.6%。第一道次与第二道次冷轧变形量(%)分别是:A工艺(20.2%、47.3%),B工艺(34.4%、35.9%),C工艺(43.6%、25.4%),D工艺(52.7%、11.1%)。两道次冷轧后的管材均采用410 ℃/1 h完全退火处理。利用金相显微镜、扫描电镜(SEM)、能谱仪、电子万能试验机等对冷轧管材的显微组织、力学性能、拉伸断口形貌等进行分析,研究冷轧变形量对5A02铝合金管材组织与性能的影响。A~D工艺第一道次冷轧后晶粒与第二相逐渐变小,抗拉强度与断裂延伸率逐渐变大;D工艺第二道次冷轧后管材的晶粒最细小,晶粒尺寸在15~55 μm,抗拉强度为186 MPa,断裂延伸率为29%;A~D工艺第二道次冷轧后第二相大小及分布均匀。结果表明:随着冷轧变形量逐渐变大,管材晶粒逐渐变小,力学性能变好;在总冷轧变形量相同的情况下,单道次变形量大的冷轧工艺退火后获得的晶粒更细小均匀,力学性能更好;第二相粒子的尺寸随着冷轧变形量的逐渐增大而变小,在总冷轧变形量相同的情况下,第二相粒子的尺寸也相同。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王川
李德富
关键词:  A02铝合金  管材  冷轧变形量  显微组织    
Abstract: At room temperature, two-pass cold rolling of hot extruded 5A02 aluminum alloy tubes were processed with four different process parameters(A—D). Billets with size of 65.5 mm×5.5 mm (outer diameter * wall thickness, same below) were cold rolled into tubes with size of 58 mm×2.5 mm, with a total reduction of 57.6%.The reduction (%)of first and second pass cold rolling was as following respectively:A(20.2%,47.3%), B(34.4%,35.9%), C(43.6%,25.4%), D(52.7%,11.1%). After each pass of rolling, the tubes were fully annealed at 410 ℃/1 h. To figure out effect of cold rolling reduction on microstructure and properties of 5A02 aluminum alloy tubes, themicrostructure, mechanical properties, and tensile fracture morphology of cold-rolled tubes were observed and analyzed by means of metallographic microscope, scanning electron microscope(“SEM”),energy spectrometer and electronic universal testing machine.The results are as below:for A—D, after the first cold rolling, grain size and second phase become smaller gradually, while tensile strength and breaking elongation become larger gradually; for D, after the second cold rolling, grain size is smallest within 15—55 μm, tensile strength is 186 MPa,and breaking elongation is 29%; for A—D, after the second cold rolling, second phase is the same in size and distribution. The above results show that:with the reduction of cold rolling becomes largergradually, grain size of the tubes become smaller and mechanical properties become better; under the circumstance that total rolling reduction keeps the same, after cold rolling with large reduction in single pass, the grain of the annealed tubes is smaller and more uniform, and its mechanical properties are better;the size of the second phase particles decreases with the increase of cold rolling reduction, and under the circumstance that total rolling reduction keeps the same,the size of the second phase keeps the same as well.
Key words:  5A02 aluminum alloy    tubes    cold rolling reduction    microstructure
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TG339  
基金资助: 国家自然科学基金(51205028)
通讯作者:  grinmldf@outollk.com   
作者简介:  王川,2018年6月毕业于北京有色金属总院,获得工学硕士学位,主要从事铝合金管材轧制工艺研究。李德富,北京有色金属总院国家有色金属复合材料工程技术研究中心副主任。1995年3月毕业于哈尔滨工业大学,材料学博士学位。
引用本文:    
王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
WANG Chuan, LI Defu. Effect of Cold Rolling Reduction on Microstructure and Properties of 5A02 Aluminum Alloy Tubes. Materials Reports, 2019, 33(8): 1361-1366.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050021  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1361
1 Chu G, Liu W. JOM, 2013, 65(5),599.
2 Qin Liyan, Liu Liying, Zhao Hailong. Heilongjiang Metallurgy, 2007(3),1(in Chinese).
秦丽艳,刘丽英, 赵海龙.黑龙江冶金, 2007(3),1.
3 聂祚仁,林双平,黄晖,等. 中国专利,CN 101403080, 2009.
4 Wang X P, Chen Z J, Geng D Y, et al. Light Alloy Fabrication Techno-logy, 2010,38(7),35(in Chinese).
汪祥鹏,陈忠家,耿德远,等.轻合金加工技术,2010,38(7),35.
5 Zhang Qi,Zhao Pizhi,Zou Liying,et al. Chinese Journal of Rare Metals, 2016, 40(2),110(in Chinese).
张琪, 赵丕植, 邹立颖,等.稀有金属, 2016, 40(2),110.
6 Feng Shaogui, Lan Jian, Gu Qing. Forging & Stamping Technology, 2017, 42(6),82(in Chinese).
冯绍贵, 兰箭, 顾青.锻压技术, 2017, 42(6),82.
7 Hu Jie, Guo Qingmiao, Li Defu, et al. Forging & Stamping Technology, 2011, 36(1), 65(in Chinese).
胡捷, 郭青苗, 李德富,等.锻压技术, 2011, 36(1), 65.
8 Li Haitao, Guo Qingmiao, Hu Jie, et al. Forging & Stamping Technology, 2011, 36(6),103(in Chinese).
李海涛, 郭青苗, 胡捷,等.锻压技术, 2011, 36(6),103.
9 Cui X L, Wang X S, Yuan S J. International Journal of Mechanical Scie-nces, 2014, 88,232.
10 Li Ruifeng. Effect of rolling deformation on microstructure and properties of thick plates of Al-6.4Zn-2.3Mg-2.1 Cu alloy. Master’s Thesis, Northeastern University, China, 2013(in Chinese).
李瑞锋. 轧制变形对Al-6.4Zn-2.3Mg-2.1Cu合金厚板组织性能的影响. 硕士学位论文,东北大学, 2013.
11 Lin Gang, Lin Huiguo, Zhao Yutao. Application Manual of Aluminum Alloy, Mechanical Industry Press, China, 2006(in Chinese).
林钢,林慧国,赵玉涛.铝合金应用手册,机械工业出版社, 2006.
12 Deng Xiaomin. Light Alloy Processing Technology, 2001, 29(11), 31(in Chinese).
邓小民.轻合金加工技术, 2001, 29(11),31.
13 Yang Yin, Shen Jian, Yan Xiaodong, et al. Hot Processing Technology, 2010, 39(21),41(in Chinese).
杨银, 沈健, 闫晓东,等.热加工工艺, 2010, 39(21),41.
14 Gao Yifei, Liang Xinbang, Deng Xinglin. GB/T 228.1-2010 metallic materials-tensile testing-part 1:method of test at room temperature, China Standard Press, China, 2012(in Chinese).
高怡斐, 梁新帮, 邓星临. GB/T 228.1-2010《金属材料拉伸实验第1部分:室温试验方法》实施指南,中国标准出版社, 2012.
15 Lin B, Zhang W, Zhao Y, et al. Materials Characterization, 2015, 104,124.
16 Du Yong.Dynamic precipitation and structure characterization of secondary phases in 5052-bassed alloys. Master’s Thesis, Chongqing University, China, 2015(in Chinese).
杜勇. 5052基铝合金中第二相的动态析出和结构表征. 硕士学位论文,重庆大学, 2015.
17 Zhou Jun. Influence of rolling and annealing process on microstructure and properties of 5182 aluminum alloy for automobile sheets. Master’s Thesis, Jiangxi University of Technology, China,2016(in Chinese).
周军. 轧制及退火工艺对汽车板用5182铝合金组织与性能的影响. 硕士学位论文,江西理工大学, 2016.
18 Lai Lin,Zhang Kui,Li Xinggang,et al. Chinese Journal of Rare Metals, 2016(6),552(in Chinese).
赖林, 张奎, 李兴刚,等.稀有金属, 2016(6),552.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 周勇, 冯雪楠, 毕宗岳, 田小江, 王雷, 李博锋. 低碳微合金管材TIG焊热影响区软化成因分析[J]. 材料导报, 2019, 33(z1): 428-431.
[3] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[4] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[5] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[6] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[7] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[8] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[9] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[10] 王云鹏,胡嘉玮,许小云,刘道峰,蒋洪章,王晓勇,颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[11] 陈伟, 邱长军, 闫梦达, 贺沅玮, 张净宜, 齐林森. 添加松香和淀粉对铁基合金粉末激光成形试样组织和力学性能的影响[J]. 材料导报, 2019, 33(11): 1848-1852.
[12] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[13] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[14] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[15] 金青林, 汪洋, 曹磊, 宋群玲. 糊状区渗氮对Cr10Mn9Ni0.7合金氮含量及凝固相变过程的影响[J]. 《材料导报》期刊社, 2018, 32(4): 579-583.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed