Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1717-1722    https://doi.org/10.11896/cldb.17090254
  金属与金属基复合材料 |
显微组织对贝氏体钢筋氢脆敏感性的影响
郭浩冉, 高古辉, 桂晓露, 白秉哲
北京交通大学机械与电子控制工程学院,北京100044
Effect of Microstructure on Hydrogen Embrittlement Susceptibility of Bainitic Bars
GUO Haoran, GAO Guhui, GUI Xiaolu, BAI Bingzhe
School of Mechanical, Electronic and Control engineering, Beijing Jiaotong University, Beijng 100044
下载:  全 文 ( PDF ) ( 24470KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过电化学充氢、慢拉伸实验并结合XRD、SEM、TEM和EBSD等显微组织表征方法,研究了显微组织对两种不同强度级别贝氏体钢筋氢脆敏感性的影响。结果表明:PSB1080钢筋强度高,但氢脆敏感性却低于PSB830钢;PSB830钢筋的组织分布不均匀,马氏体块尺寸差异较大,马氏体中高密度的位错为可逆氢陷阱,充氢之后氢分布不均匀,在拉伸的过程中,氢原子随位错迁移,扩散富集至裂纹尖端,裂纹在脆性大的马氏体和强度低的铁素体中扩展迅速,氢脆敏感性大。PSB1080钢筋板条间的残留奥氏体为不可逆氢陷阱,阻碍了氢原子的扩散富集,此外其组织的均匀性使钢中氢的分布也相对均匀,氢脆敏感性小。亚微米、纳米级的残留奥氏体同时具有良好的机械稳定性和化学稳定性,缓解了应力集中,阻碍了裂纹的扩展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭浩冉
高古辉
桂晓露
白秉哲
关键词:  贝氏体钢筋  显微组织  氢脆敏感性  可逆氢陷阱  残留奥氏体    
Abstract: The bars were widely used in many areas such as high speed road, high railway and bridge engineering. In this paper, the effect of microstructure on hydrogen embrittlement susceptibility of two strength grade of bainitic bars was investigated by electrochemical hydrogen charging tests and slow strain rate tensile tests, scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and electron back scatter diffraction patterns (EBSD). The results showed that microstructure had strong impact on hydrogen embrittlement susceptibility. Due to the appropriate alloying and microstructural designs, the strength of PSB1080 bars was much higher than that of PSB830 bars. However, it is surprising that the hydrogen embrittlement susceptibility of the PSB1080 bars was lower. The uneven distribution of hydrogen in PSB830 was mainly caused by the heterogeneous distribution of microstructure. The reason of higher hydrogen embrittlement susceptibility of PSB830 was that the martensite with high dislocation density was regard as the reversible hydrogen trap, therefore, a lot of hydrogen atoms were absorbed in the specimens. During tensile test, the hydrogen atoms were easy to diffuse and enrich. On contrary, the martensite and bainite with better coordinated deformation capability were uniform distribution in the PSB1080. The filmy retained austenite, which was located between laths, was seen as an irreversible hydrogen trap, so the diffusion and enrichment of hydrogen atom was hindered. At the same time, the filmy retained austenite also had high mechanical stability and chemical stability. Therefore, the hydrogen embrittlement susceptibility of PSB1080 bars was lower than PSB830 bars.
Key words:  bainitic bars    microstructure    hydrogen embrittlement susceptibility    reversible hydrogen trap    retained austenite
                    发布日期:  2019-05-16
ZTFLH:  TG113.12  
基金资助: 国家重点基础研究发展计划(973计划)(2015CB654804);北京市自然科学基金(2172047)
通讯作者:  gaogh@bjtu.edu.cn   
作者简介:  郭浩冉,2018年4月毕业于北京交通大学并获得材料科学与工程专业硕士学位,主要从事金属材料热处理的研究。 高古辉,北京交通大学,副研究员,博士生导师。2013年1月毕业于清华大学材料系。同年进入北京交通大学机电学院工作至今,主要从事贝氏体相变与贝氏体钢的研究。在国内外重要期刊发表文章30多篇,授权国家发明专利5项。
引用本文:    
郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
GUO Haoran, GAO Guhui, GUI Xiaolu, BAI Bingzhe. Effect of Microstructure on Hydrogen Embrittlement Susceptibility of Bainitic Bars. Materials Reports, 2019, 33(10): 1717-1722.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17090254  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1717
1 Wang J. The Research of finished-rolled screw-thread steel bars continuous induction heat treatment and deformation control. Master's Thesis, Beijing Research Institute of Mechanical & Electrical Technology, China,2011 (in Chinese).
王劲. 高强精轧螺纹钢筋连续感应热处理及控制变形研究. 硕士学位论文, 北京机电研究所, 2011.
2 Sun Y W, Chen J Z, Liu J.Acta Metallurgica Sinica, 2015, 51(11), 1315 (in Chinese).
孙永伟, 陈继志, 刘军.金属学报, 2015, 51(11), 1315.
3 Li H L, Hui W J, Wang Y B, et al.Acta Metallurgica Sinica, 2001, 37(5), 512 (in Chinese).
李会录, 惠卫军, 王燕斌, 等.金属学报, 2001, 37(5),512.
4 Depover T, Monbaliu O, Wallaert E, et al.International Journal of Hydrogen Energy, 2015, 40(47), 16977.
5 Tian Y, Wang M Q, Li J X, et al.Acta Metallurgica Sinica, 2008, 44(4), 403 (in Chinese).
田野, 王毛球, 李金许, 等.金属学报, 2008, 44(4), 403.
6 Li J X, Wang Y B, Chu W Y, et al.Journal of Chinese Society for Corrosion and Protection, 1998, 18(2), 113 (in Chinese).
李金许, 王燕斌, 褚武扬, 等. 中国腐蚀与防护学报, 1998, 18(2), 113.
7 Zhang Y J, Zhou C, Hui W J, et al.Journal of Iron and Steel Research, 2014, 26(5), 49(in Chinese).
张永健, 周超, 惠卫军, 等.钢铁研究学报, 2014, 26(5), 49.
8 He J H, Tang X Y, Chen N P.Acta Metallurgica Sinica, 1990, 26(4), A257 (in Chinese).
何建宏, 唐祥云, 陈南平.金属学报, 1990, 26(4), A257.
9 Song Y J, Qi M.Acta Metallurgica Sinica, 1987, 23(3), 205 (in Chinese).
宋余九, 齐民. 金属学报,1987, 23(3), 205.
10 Yang F B, Bai B Z, Liu D Y, et al.Acta Metallurgica Sinica, 2004, 40(3), 296 (in Chinese).
杨福宝, 白秉哲, 刘东雨, 等. 金属学报, 2004,40(3), 296.
11 Gao K, Wang L D, Zhu M, et al.Acta Metallurgica Sinica, 2007, 43(3), 315 (in Chinese).
高宽, 王六定, 朱明, 等.金属学报, 2007, 43(3), 315.
12 Gui X L, Liu R, Gao G H, et al.Transactions of Materials and Heat Treatment, 2016, 37(10), 154 (in Chinese).
桂晓露, 刘蓉, 高古辉, 等.材料热处理学报, 2016, 37(10), 154.
13 Zhongqi Cui,Metallography and heat treatment, Mechanical Industry Press, China, 2007 (in Chinese).
崔忠圻.金属学与热处理, 机械工业出版社, 2007.
14 Zhang Q, Shi Q H.Foundry Technology, 2013, 34(5), 533 (in Chinese).
张勤, 石秋红.铸造技术,2013, 34(5), 533.
15 Wang Y, Zhang K, Guo Z H, et al.Acta Metallurgica Sinica, 2012, 48(6), 641 (in Chinese).
王颖,张柯,郭正洪, 等.金属学报, 2012,48(6), 641.
16 Gao G H, Zhang H, Gui X L, et al.Acta Materialia, 2014, 76, 425.
17 Chang K D. Study on mechanism of delayed fracture for Bainite/Marten-site dual-phase high strength steel.Ph.D. Thesis, Tsinghua University, China, 2002 (in Chinese).
常开地. 贝氏体/马氏体复相高强钢延迟断裂机理的研究.博士学位论文, 清华大学, 2002.
18 Yang Ping.Electron backscatter diffraction technology and its application, Mechanical Industry Press, China, 2013 (in Chinese).
杨平.电子背散射衍射技术及其应用,冶金工业出版社, 2013.
19 Luo J. The mechanism of hydrogen embrittlement and improvement method for Q-P-T steel. Master's Thesis, Shanghai Jiao Tong University, China, 2015 (in Chinese).
罗洁. Q-P-T钢的氢脆机制及其改善措施. 硕士学位论文, 上海交通大学, 2015.
20 Wu Q, Zikry M A.Journal of the Mechanics and Physics of Solids, 2015, 85, 143.
21 Zhu X, Zhang K, Li W, et al.Materials Science & Engineering A, 2016, 658, 400.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[4] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[5] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[6] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[7] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[8] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[9] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[10] 王云鹏,胡嘉玮,许小云,刘道峰,蒋洪章,王晓勇,颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[11] 陈伟, 邱长军, 闫梦达, 贺沅玮, 张净宜, 齐林森. 添加松香和淀粉对铁基合金粉末激光成形试样组织和力学性能的影响[J]. 材料导报, 2019, 33(11): 1848-1852.
[12] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[13] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[14] 金青林, 汪洋, 曹磊, 宋群玲. 糊状区渗氮对Cr10Mn9Ni0.7合金氮含量及凝固相变过程的影响[J]. 《材料导报》期刊社, 2018, 32(4): 579-583.
[15] 肖轶, 徐呈艺, Ryou Min, 曹健. Cr3C2粒径对等离子堆焊铁基合金层组织与耐磨性能的影响[J]. 材料导报, 2018, 32(24): 4329-4333.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed