Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 579-583    https://doi.org/10.11896/j.issn.1005-023X.2018.04.014
  材料研究 |
糊状区渗氮对Cr10Mn9Ni0.7合金氮含量及凝固相变过程的影响
金青林, 汪洋, 曹磊, 宋群玲
昆明理工大学材料科学与工程学院,昆明 650093
Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy
JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2322KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了糊状区保温对Cr10Mn9Ni0.7合金凝固过程和氮含量及相变过程的影响。结果表明,随着糊状区保温时间的延长,铸锭中的氮含量逐渐升高,同时铸锭中的气孔率逐渐降低。当氮气压力为0.1 MPa时,氮含量由0.17%升高到0.23%, 而气孔率则从1.86%降至1.37%;当氮气压力为0.4 MPa时,氮含量由0.29%升高到0.37%,而气孔率从1.41%降至1.06%。糊状区保温的增氮机制可归结为:在糊状区保温会促进包晶反应进程,使更多的铁素体转变为奥氏体;同时糊状区保温能够提高残留液相中的氮含量,进而提高“通道状”奥氏体中的氮含量。糊状区保温能够消除铁素体阱,从而降低气孔率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金青林
汪洋
曹磊
宋群玲
关键词:  糊状区保温  氮含量  显微组织  相变    
Abstract: The effect of nitriding of Cr10Mn9Ni0.7 alloy in mushy zone on solidification, nitrogen content and phase transformation was investigated. The results showed that the nitrogen content raised with nitriding time, and the occurrence of gas pore defects was reduced. When the nitrogen pressure was 0.1 MPa, nitrogen content increased from 0.17% to 0.23%, while the porosity declined from 1.86% to 1.37%. When the nitrogen pressure was 0.4 MPa, nitrogen content increased from 0.29% to 0.37%, while the porosity declined from 1.41% to 1.06%. The mechanism of the nitrogen content improvement by nitriding in mushy zone can be ascribed to the facilitation of peritectic reaction and diffusion of nitrogen from liquid into austenite. The increase of the nitrogen content of channel like austenite in the residual liquid is another reason for the nitrogen content improvement. Melt holding in mushy zone can avoid the “ferritic trap”, and thus reduce the occurrence of the gas pore defects.
Key words:  melt holding in mushy zone    nitrogen content    microstructure    phase transformation
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG142  
  TG113  
基金资助: 国家自然科学基金(51464026)
作者简介:  金青林:男,1971年生,博士,教授,主要从事金属凝固方向的研究 E-mail:clcaoleicl@126.com
引用本文:    
金青林, 汪洋, 曹磊, 宋群玲. 糊状区渗氮对Cr10Mn9Ni0.7合金氮含量及凝固相变过程的影响[J]. 《材料导报》期刊社, 2018, 32(4): 579-583.
JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy. Materials Reports, 2018, 32(4): 579-583.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.014  或          https://www.mater-rep.com/CN/Y2018/V32/I4/579
1 Simmons J W. Overview: High-nitrogen alloying of stainless steels[J].Materials Science and Engineering:A,1996,207(2):159.
2 Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J].Materials Science and Engineering R:Reports,2009,65(4-6):39.
3 Liu H D, Wang D Z, Wei H D, et al. Research progress in high nitrogen austenite stainless steel[J].Special Steel,2009,30(4):45(in Chinese).
刘海定,王东哲,魏捍东,等.高氮奥氏体不锈钢的研究进展[J].特殊钢,2009,30(4):45.
4 Lang Y, Qu H, Chen H, et al. Research progress and development tendency of nitrogen-alloyed austenitic stainless steels[J].Journal of Iron and Steel Research(International),2015,22(2):91.
5 Lang Y P, Chen H T, Weng Y Q, et al. Applications of Thermo-Calc in research of high nitrogen austenitic stainless steels[J].Journal of Materials Engineering,2013(5):16(in Chinese).
郎宇平,陈海涛,翁宇庆,等.热力学计算在高氮奥氏体不锈钢研究中的应用[J].材料工程,2013(5):16.
6 Li H B. Metallurgical fundamental and properties of high nitrogen austenitic stainless steels[D].Shenyang:Northeastern University,2008(in Chinese).
李花兵.高氮奥氏体不锈钢的冶炼理论基础及其材料性能研究[D].沈阳:东北大学,2008.
7 Oshima T, Habara Y, Kuroda K. Efforts to save nickel in austenitic stainless steels[J].Transactions of the Iron and Steel Institute of Japan,2007,47(3):359.
8 Xiang H L, Huang W L, Liu D, et al. Effect of N content on microstructure and properties of 29Cr casting super duplex stainless steel[J].Acta Metallurgica Sinica,2010,46(3):304(in Chinese).
向红亮,黄伟林,刘东,等.N含量对29Cr铸造超级双相不锈钢组织及性能的影响[J].金属学报,2010,46(3):304.
9 Maier G G, Astafurova E G, Melnikov E V, et al. The effect of hydrogen on strain hardening and fracture mechanism of high-nitrogen austenitic steel[J].IOP Conference Series: Materials Science and Engineering,2016,140(1):12005.
10 Li J Y, Zhao P, Yanagimoto J, et al. Effects of heat treatment on the microstructures and mechanical properties of a new type of nitrogen-containing die steel[J].International Journal of Minerals,Metallurgy,and Materials,2012,19(6):511.
11 Li J, Liu H, Huang P. Effects of pre-precipitation of Cr2N on microstructures and properties of high nitrogen stainless steel[J].Journal of Central South University of Technology,2012,19(5):1189.
12 Sun G, Zhang Y, Sun S, et al. Plastic flow behavior and its relationship to tensile mechanical properties of high nitrogen nickel-free austenitic stainless steel[J].Materials Science and Engineering:A,2016,662:432.
13 García C, Martín F, Tiedra P De, et al. Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen-hydrogen atmosphere[J].Corrosion Science,2007,49(4):1718.
14 Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel[J].Materials & Design,2016,110:802.
15 Wang Y T, Ren Y B, Yang K, et al. Effects of high temperature nitriding on microstructure and mechanical properties of high nitrogen nickel-free stainless steel[J].Heat Treatment of Metals,2012(5):98(in Chinese).
王耘涛,任伊宾,杨柯,等.高温渗氮工艺对高氮无镍不锈钢组织及力学性能的影响[J].金属热处理,2012(5):98.
16 Cisneros M M A V. Development of austenitic nanostructures in high-nitrogen steel powders processed by mechanical alloying[J].Metallurgical and Materials Transactions A,2002,33(7):2139.
17 Zhang F, Li G Q, Zhu C Y. Pressurized induction melting of high nitrogen Fe-Cr-Mn-Ni austenite stainless steel[J].Special Steel,2005,26(5):13(in Chinese).
张峰,李光强,朱诚意.高氮Fe-Cr-Mn-Ni系奥氏体不锈钢的加压感应熔炼[J].特殊钢,2005,26(5):10.
18 Dong T L, Li G Q. Pressurized induction melting of Fe-Cr-V high nitrogen steels and its deoxidation with Al[J].Journal of Iron and Steel Research,2008,20(3):9(in Chinese).
董廷亮,李光强.加压感应熔炼Fe-Cr-V系高氮钢及其铝脱氧[J].钢铁研究学报,2008,20(3):9.
19 Wang S H, Wu Y H, Zhao D G. Effect of solidification pressure on nitrogen macro-segregation in high nitrogen steel[J].Foundry Technology,2013(7):848(in Chinese).
王书桓,吴彦辉,赵定国.凝固压力对高氮钢中氮宏观偏析的影响[J].铸造技术,2013(7):848.
20 Yang S, Lee Z. A method for predicting nitrogen gas pores in nitrogen alloying stainless steels[J].Materials Science and Engineering:A,2006,417(1-2):307.
21 Ridolfi M R, Tassa O. Formation of nitrogen bubbles during the solidification of 16—18% Cr high nitrogen austenitic stainless steels[J].Intermetallics,2003,11(11-12):1335.
22 Svyazhin A G A B. Critical nitrogen concentration in high-nitrogen steels for the production of a dense ingot[J].Metallurgist,2015,58(11):959.
23 Griesser S, Bernhard C, Dippenaar R. Effect of nucleation undercooling on the kinetics and mechanism of the peritectic phase transition in steel[J].Acta Materialia,2014,81:111.
24 Huang T, Jin Q L. Effect of melt holding in mushy zone on nitrogen content and microstructure of 201 austenitic stainless steel[J].Hot Working Technology,2016,45(19):87(in Chinese).
黄通,金青林.糊状区保温时间对201奥氏体不锈钢组织的影响[J].热加工工艺,2016,45(19):87.
25 Fu J W, Yang Y S. Solidification behavior in three-phase region of AISI 304 stainless steel[J].Materials Letters,2013,93:18.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[3] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[4] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[5] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[6] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[7] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[8] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[9] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[10] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[11] 范晓燕, 赵雪婷, 欧志强. 塑晶材料及其压卡效应研究发展与展望[J]. 材料导报, 2024, 38(5): 22080087-8.
[12] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[13] 曹磊, 杨依铭, 王国承. 镁钛对包晶钢凝固过程中包晶转变收缩的影响[J]. 材料导报, 2024, 38(24): 23080216-6.
[14] 程立宏, 周裕琦, 王建峰, 李柱, 穆战, 占小红. 焊丝成分对国产Invar合金GTAW接头组织差异性的影响[J]. 材料导报, 2024, 38(23): 23080151-6.
[15] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed