Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22110170-6    https://doi.org/10.11896/cldb.22110170
  高分子与聚合物基复合材料 |
相变微胶囊保温砂浆的制备及性能
龙勇1, 王宇1,*, 刘天乐2, 王亚洲1
1 桥梁智能化与绿色建设国家重点实验室,武汉 430034
2 中国地质大学(武汉)工程学院,武汉 430074
Preparation and Properties of Thermal Insulation Mortar Incorporated with Phase Change Microcapsules
LONG Yong1, WANG Yu1,*, LIU Tianle2, WANG Yazhou1
1 State Key Laboratory of Bringe Intelligent and Green Construction, Wuhan 430034, China
2 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 8954KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为减少建筑物的能耗,响应“碳中和”“碳达峰”国家政策,本工作基于原位聚合法,以正十八烷-正二十烷混合物为二元相变芯材,甲基丙烯酸甲酯(PMMA)为外层壁材,制备了一种适用于保温节能水泥砂浆的相变微胶囊(MiPCM)。MiPCM通过内部芯材在相变过程中吸热或放热的特性,降低外界环境对水泥砂浆内部温度的影响,从而减少人们对空调等电器的依赖程度,达到节能减排的目的。MiPCM呈球霰状,无团聚现象,具备明显的芯-壁结构,其相变温度区间和潜热分别为17.8~36.7 ℃和74.72 J/g。TG分析和热循环试验结果表明,MiPCM具备良好的热稳定性。将MiPCM掺加到水泥砂浆中进行温升实验。结果表明,在红外热源照射环境中,MiPCM明显减缓了水泥砂浆中心温度的变化速率,水泥砂浆石的峰值温度降低了7 ℃。因此,以MiPCM为外加剂的水泥砂浆符合保温节能的设计理念。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙勇
王宇
刘天乐
王亚洲
关键词:  相变材料  微胶囊技术  水泥砂浆  保温节能    
Abstract: In order to reduce the energy consumption of buildings, the National Phase Change Policy of ‘Carbon Neutralization' and ‘Carbon Peak' is responded. Based on in-situ polymerization method, a phase change microcapsule (MiPCM) suitable for thermal insulation and energy saving cement mortar was prepared by using n-octadecane-n-octadecane mixture as binary phase change core material and methyl methacrylate (PMMA) as outer wall material. MiPCM reduces the influence of external environment on the internal temperature of cement mortar through the heat absorption or heat release characteristics of internal core materials in the phase change process, thereby reducing people's dependence on air conditioners and other electrical appliances, and achieving the purpose of energy conservation and emission reduction. The experimental results showed that the phase transition temperature range and latent heat of MiPCM were 17.8—36.7 ℃ and 74.72 J/g, respectively. MiPCM was graupel-like, without agglomeration and had obvious core-wall structure. TG analysis and thermal cycling test showed that MiPCM had good thermal stability. The temperature rise experiment was carried out by adding MiPCM into cement mortar. The results show that in the infrared heat source irradiation environment, MiPCM significantly slows down the change rate of center temperature of cement mortar, and the peak temperature of cement mortar decreases by 7 ℃. Therefore, the cement mortar with MiPCM as additive conforms to the design concept of heat preservation and energy saving.
Key words:  phase change material    microencapsulation technology    cement mortar    heat preservation and energy saving
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TB332  
基金资助: 桥梁结构健康与安全国家重点实验室开发研究基金项目(BHSKL21-02-GF);国家重点研发计划(2022YFC3004804)
通讯作者:  * 王宇,中铁大桥科学研究院,初级工程师。2019年6月本科毕业于中国计量大学材料科学与工程学院,2022年6月在中国计量大学取得工学硕士学位,同年7月任职于中铁大桥科学研究院。主要研究方向为海工混凝土与大体积混凝土温控抗裂等。973347858@qq.com   
作者简介:  龙勇,高级工程师,交通部公路工程试验检测工程师、水运工程试验检测工程师,长期从事工程试验与高性能混凝土研究,先后发表论文8篇,获国家专利7项。
引用本文:    
龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
LONG Yong, WANG Yu, LIU Tianle, WANG Yazhou. Preparation and Properties of Thermal Insulation Mortar Incorporated with Phase Change Microcapsules. Materials Reports, 2024, 38(9): 22110170-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110170  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22110170
1 Wang Y M, Tang B T, Zhang S F, et al. Advanced Functional Materials, 2013, 23, 4354.
2 Qian X Q, Zhu Y T. China Civil Engineering Journal, 2010,43(S2),392 (in Chinese).
钱晓倩, 朱耀台. 土木工程学报, 2010, 43(S2), 392.
3 Sun W C. Research on building energy saving effect of active-passive coupling system based on composite phase change materials containing hydrated inorganic salts. Ph.D. Thesis, South China University of Technology, China, 2020 (in Chinese).
孙婉纯. 基于水合无机盐复合相变材料的主动与被动耦合型建筑节能研究. 博士学位论文, 华南理工大学, 2020.
4 Liu J B. Research on energy consumption and thermal comfort of energy-saving wall buildings. Master's Thesis, Changsha University of Science and Technology, China, 2012 (in Chinese).
刘剑波. 节能墙体建筑能耗及热舒适性研究. 硕士学位论文, 长沙理工大学, 2012.
5 Liu M T, Ye X J, Hou Z J, et al. Contamination Control & Air-Conditioning. 2018(3), 58 (in Chinese).
刘明炀, 叶晓江, 侯志坚, 等. 洁净与空调技术, 2018(3), 58.
6 Wang T Y, Wang S F, Luo R L, et al. Applied Energy, 2016,171,113.
7 Hu Z Y, Lai Z X, Liu X, et al. Journal of Chongqing University of Technology (Natural Science), 2023, 37(5), 60 (in Chinese).
胡远志, 赖贞行, 刘西, 等. 重庆理工大学学报(自然科学), 2023, 37(5), 60.
8 Wang X G, Lei W Y, Zhu J L, et al. Materials Reports, 2023, 37(20), 198 (in Chinese).
王信刚, 雷为愉, 朱街禄, 等. 材料导报, 2023, 37(20), 198.
9 Song J J, Xu M B, Wang X L, et al. Drilling Fluid & Completion Fluid, 2019, 36(2), 218 (in Chinese).
宋建建, 许明标, 王晓亮, 等. 钻井液与完井液, 2019, 36(2): 218.
10 Zhang Y H, Liu Z Y, Tang B L, et al. Acta Materiae Compositae Sinica, 2018, 35(4), 980 (in Chinese).
张运华, 刘芷怡, 唐蓓莉, 等. 复合材料学报, 2018, 35(4), 980.
11 Yang G K, Jiang G S, Liu T L, et al. Materials Reports, 2021, 35(2), 2032 (in Chinese).
杨国坤, 蒋国盛, 刘天乐, 等. 材料导报, 2021, 35(2), 2032.
12 Chen C, Guo H F, Liu Y N, et al. Energy and Buildings. 2008;40: 882.
13 Liu X J, Feng Q, Peng Z G, et al. Energy, 2020, 208(8), 118175.
14 Liu J C, Chen Q, Liu Y P, et al. China Plastics, 2022, 36(1), 178 (in Chinese).
刘金成, 陈谦, 刘玉佩, 等. 中国塑料, 2022, 36(1), 178.
15 Huo J H, Peng Z G, Xu K, et al. Energy, 2019, 12, 186.
16 Yang G K, Liu T L, Aleksandravih B P, et al. Energy, 2022, 02, 253.
17 Huang Y, Liu H X, Wang C L, et al. Chinese Journal of Synthetic Che-mistry, 2022, 30(5), 365 (in Chinese).
黄熠, 刘和兴, 王成龙,等. 合成化学, 2022, 30(5), 365.
18 Zheng W B, Sun D, Li Y Y, et al. Journal of Chongqing University of Technology (Natural Science), 2023, 37(9), 356 (in Chinese).
郑炜博, 孙东, 李云飞, 等. 重庆理工大学学报(自然科学), 2023, 37(9), 356.
19 Zhang D Y, Bai K H, Li C C, et al. Materials Reports, 2022, 36(8), 170(in Chinese).
张东尧, 白开皓, 李传常, 等. 材料导报, 2022, 36(8), 170.
20 Wu D G, Guo N, Yin H Y, et al. Polymer Materials Science & Enginee-ring, 2020, 36(10), 1 (in Chinese).
吴殿国,郭娜,殷鸿尧,等. 高分子材料科学与工程. 2020, 36(10), 1.
21 Wang L L. Preparation and application of paraffin microcapsule phase change energy storage materials. Master's Thesis, Hunan Institute of Science and Technology, China, 2021 (in Chinese).
王莉莉. 石蜡微胶囊相变储能材料的制备及应用. 硕士学位论文,湖南理工学院,2021.
22 Huang L K. Journal of Chongqing University of Technology, 2022, 36(2), 101 (in Chinese).
黄兰可. 重庆理工大学学报(自然科学) , 2022, 36(2), 101.
23 Wang Y B, Li J W, Miao W J, et al. Construction and Building Mate-rials, 2021, 22, 297.
[1] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[2] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[3] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[4] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[5] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[6] 曾关跃, 高专, 熊玉竹. 多壁碳纳米管负载银/微晶纤维素定型复合相变材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22040102-6.
[7] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
[8] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[9] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[10] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[11] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[12] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[13] 郑灵钰, 章学来, 纪珺. 定型阻燃相变储热材料的研究进展[J]. 材料导报, 2022, 36(5): 20100275-8.
[14] 陈鑫, 刘凌云, 陶马冠宇, 王晓光, 柳建军. 用于电机散热的定形复合相变材料研究[J]. 材料导报, 2022, 36(19): 21060037-7.
[15] 蒋自鹏, 张雨, 铁健, 铁生年. 一步法氧化改性纳米碳增强芒硝基复合相变材料热性能[J]. 材料导报, 2022, 36(12): 21030077-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed