Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21080077-6    https://doi.org/10.11896/cldb.21080077
  无机非金属及其复合材料 |
定向导热的石墨烯气凝胶相变复合材料的研究
马驰, 曹流, 张东*
同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804
Study on Graphene Aerogel Phase Change Composites with Directional Thermal Conduction
MA Chi, CAO Liu, ZHANG Dong*
Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 8332KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机相变材料具有较高的储热性能,但是较低的热导率限制了它的应用领域。鉴于此,本工作采用液氮冷冻法制备了石墨烯气凝胶,通过改变氧化石墨浓度来调整其结构,并用真空浸渍法将气凝胶与石蜡制备成相变复合材料,最后以实验测试与数值模拟相结合的方式研究气凝胶结构对相变复合材料热学性能的影响。结果表明:液氮冷冻法制备的气凝胶具有定向导热骨架,其优异的导热性能大幅提升了相变复合材料的热导率。同时,气凝胶以提升材料中石蜡相变焓的方式提升了材料的储热性能。该发现有望解决导热填料不能同时提升材料的导热性能和储热性能的问题,为热能工程的发展提供帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马驰
曹流
张东
关键词:  定向导热  石墨烯气凝胶  储热性能  有机相变材料  有限元模拟    
Abstract: Organic phase change materials have great thermal storage performance, but their applications are limited by their low thermal conduction. In this work, for that reason, the graphene aerogel (OGA) was prepared by the liquid nitrogen freezing method. The structure of OGA was adjusted by changing the concentration of graphite oxide (GO) solutions. The graphene aerogel phase change composite (GAP) was prepared with OGA and melted paraffin by the vacuum impregnation method. The influence of the structure of OGA on the thermal performance of GAP was studied experimentally and analyzed by numerical simulations. The results showed that OGA prepared by the liquid nitrogen freezing method had a directionally conductive framework structure, its excellent thermal conduction greatly improved the thermal conduction of GAP. Meanwhile, the thermal storage performance of GAP was improved by the increase of the phase transition enthalpy of paraffin. This discovery is expected to be used to solve the contradiction of GAP between the heat storage performance and the thermal conduction after adding thermal conductivity matrix and to provide help for the development of thermal engineering.
Key words:  directional thermal conduction    graphene aerogel    thermal storage performance    organic phase change material    finite element simulation
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TQ34  
基金资助: 国家自然科学基金委员会-中国工程物理研究院联合基金资助项目(U1730117)
通讯作者:  * 张东,同济大学教授、博士研究生导师。1991年、1997年毕业于同济大学材料科学与工程系(学院)无机非金属材料专业,先后获工学学士和工学博士学位。主要研究方向为相变储能材料、新型建筑功能材料和智能材料。目前已发表学术论文100余篇。zhangdng@tongji.edu.cn   
作者简介:  马驰,本科毕业于盐城工学院,现为同济大学硕士研究生,师从张东教授,研究方向为相变储能材料,发表学术论文2篇。
引用本文:    
马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
MA Chi, CAO Liu, ZHANG Dong. Study on Graphene Aerogel Phase Change Composites with Directional Thermal Conduction. Materials Reports, 2023, 37(1): 21080077-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080077  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21080077
1 Zhong Y J, Zhou M, Huang F Q, et al. Solar Energy Materials & Solar Cells, 2013, 113, 195.
2 Park S, Lee K S, Bozoklu G, et al. ACS Nano, 2008, 2(3), 572.
3 Regin A F, Solanki S C, Saini J S. Renewable & Sustainable Energy Reviews, 2008, 12(9), 2438.
4 Kroto H W, Heath J R, O'brien S C, et al. Nature, 1985, 318, 162.
5 Cozzolino R, Chiappini D, Bella G. Energy Conversion and Management, 2019, 200, 112101.
6 Jebasingh B E, Arasu A V. Energy Storage Materials, 2020, 24, 52.
7 Sushobhan B R, Kar S P. Energy Procedia, 2017, 109, 385.
8 Kenisarin M, Mahkamov K, Kahwash F, et al. Solar Energy Materials and Solar Cells, 2019, 200, 110026.
9 Jia S K, Zhu Y, Wang Z, et al. Fibers and Polymers, 2017, 18, 1171.
10 Chen Z, Ren W, Gao L, et al. Nature Materials, 2011, 10(6), 424.
11 Nardecchia S, Serrano M C, Garcia-Arguelles S, et al. Materials(Basel), 2017, 10(4), 355.
12 Nguyen S T, Nguyen H T, Rinaldi A, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414(46), 352.
13 Ren W W, Cao L, Zhang D. International Journal of Energy Research, 2020, 44(1), 242.
14 Rafiee M A, Rafiee J, Wang Z, et al. ACS Nano, 2009, 3(12), 3884.
15 Vickery J L, Patil A J, Mann S. Advanced Materials, 2009, 21(21), 2180.
16 Cao L, Zhang D. Solar Energy Materials and Solar Cells, 2021, 223, 101949.
17 Wang Y, Yang C, Cheng Y, et al. RSC Advances, 2015, 5(101), 82638.
18 Nan C W, Birringer R, Clarke D R, et al. Journal of Applied Physics, 1997, 81(10), 6692.
19 Jagannadham K. Metallurgical and Materials Transactions B, 2012, 43(2), 316.
20 Tucureanu V, Matei A, Avram A M. Critical Reviews in Analytical Chemi-stry, 2016, 46(6), 502.
21 Shen X, Wang Z Y, Wu Y, et al. Carbon, 2016, 108, 412.
22 Phadungphatthanakoon S, Poompradub S, Wanichwecharungruang S P. Applied Materials & Interfaces, 2011, 3(9), 3691.
23 Acik M, Lee G, Mattevi C, et al. Journal of Physical Chemistry C, 2011, 115(40), 19761.
24 Konatham D, Papavassiliou D V, Striolo A. Chemical Physics Letters, 2012, 527, 47.
25 Nieto-Suarez M, Lopez-Quintela M A, Lazzari M. Carbohydrate Polymers, 2016, 141, 175.
26 Luo T F, Lloyd J R. Advanced Functional Materials, 2012, 22(12), 2495.
[1] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[2] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[5] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[6] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[7] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[8] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[9] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[10] 余志远, 王昌, 汶斌斌, 艾迪, 刘汉源, 于振涛. AZ31镁合金管材游动芯头拉拔有限元模拟[J]. 材料导报, 2018, 32(16): 2778-2782.
[11] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed