Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2778-2782    https://doi.org/10.11896/j.issn.1005-023X.2018.16.014
  金属与金属基复合材料 |
AZ31镁合金管材游动芯头拉拔有限元模拟
余志远1,2, 王昌1, 汶斌斌1, 艾迪1,2, 刘汉源1, 于振涛1
1 西北有色金属研究院,陕西省医用金属材料重点实验室,西安 710016;
2 东北大学材料科学与工程学院,沈阳110819
FEM Simulation for the Floating-plug Drawing Process of AZ31 Magnesium Alloy Tube
YU Zhiyuan1,2, WANG Chang1, WEN Binbin1, AI Di1,2, LIU Hanyuan1, YU Zhentao1
1 Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi’an 710016;
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819
下载:  全 文 ( PDF ) ( 3147KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 运用Deform软件模拟了AZ31镁合金管材游动芯头拉拔过程,并对比研究了模具锥角、定径带长度、变径带长度对拉拔管材成形性的影响。结果表明:在拉拔AZ31管材时,最大压应力出现在外模变径段与定径段过渡区,合适的模角配合不仅能降低拉拔力,还能提高尺寸精度。模具定径段长度对管材变形时的均匀性和拉拔力的影响较大,变径段长度对管材拉拔的影响较小。最终通过实验验证了模拟结果,制备出了尺寸精度高的AZ31镁合金管材。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余志远
王昌
汶斌斌
艾迪
刘汉源
于振涛
关键词:  AZ31管材  游动芯头拉拔  有限元模拟  模具设计    
Abstract: The floating-plug drawing deformation process of AZ31 magnesium alloy tube was simulated by Deform-3D. The influences of outer die-plug half-cone-angle matching, die bearing length and transition section length on the deformability of the floating-plug drawing were investigated. The results showed that the material displays the maximum compressive stress in the transition zone between bearing band and transition band of the outer die during the drawing process. The appropriate matching of outer die-plug cone angles can reduce the drawing force, and also improve the dimensional accuracy. The die bearing length has a great impact on the tube’s strain uniformity and the drawing force, while the transition section length affects little. Finally, the experiment verified the simulation results and confirmed the successful production of the resultant high-dimensional-accuracy AZ31 magnesium alloy pipe.
Key words:  AZ31 magnesium alloy tube    floating-plug drawing    finite element simulation    die design
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TG359  
基金资助: 陕西省工业科技攻关项目(2016GY-210);西安市未央区科技计划项目(201601);陕西省社会发展科技攻关项目(2016SF-237);陕西省社会发展科技攻关项目(2016SF-105)
通讯作者:  于振涛:通信作者,男,教授,主要从事生物医用金属材料的研究 E-mail:yzt@c-nin.com   
作者简介:  余志远:男,1994年生,硕士研究生,主要从事镁合金管材制备工艺的研究 E-mail:yuzhiyuan828@outlook.com
引用本文:    
余志远, 王昌, 汶斌斌, 艾迪, 刘汉源, 于振涛. AZ31镁合金管材游动芯头拉拔有限元模拟[J]. 材料导报, 2018, 32(16): 2778-2782.
YU Zhiyuan, WANG Chang, WEN Binbin, AI Di, LIU Hanyuan, YU Zhentao. FEM Simulation for the Floating-plug Drawing Process of AZ31 Magnesium Alloy Tube. Materials Reports, 2018, 32(16): 2778-2782.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.014  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2778
1 丁文江,彭立明,付彭怀,等.高性能镁合金发展现状与趋势[J].铸造纵横,2008(5):9.
2 Xiao P,Liu T M,Jiang D. Research status and development of AZ31 magnesium alloy[J].Journal of Chongqing University(Natural Science Edition),2006,29(11):81(in Chinese).
肖盼,刘天模,姜丹.AZ31镁合金的研究进展[J].重庆大学学报(自然科学版),2006,29(11):81.
3 Chen X X,Li Q S,Fan Y Y. Search actually of AZ31 magnesium alloy[J]. Shanxi Metallurgy,2009,32(1):1(in Chinese).
陈孝先,李秋书,范艳艳.AZ31镁合金的研究现状[J].山西冶金,2009,32(1):1.
4 Zhang B, Yang H, Guo L, et al. Effects of ram speed on AZ31 Mg alloy thin-walled tube porthole extrusion based on FEM[J]. Rare Metal Materials & Engineering,2012,41(12):2178.
5 Hashmi M S J. Aspects of tube and pipe manufacturing processes: Meter to nanometer diameter[J]. Journal of Materials Processing Technology,2006,179(1):5.
6 Fang G, Ai W J, Leeflang M A, et al. Experimental and Numerical Investigations into extrusion to produce thin-walled seamless tubes for vascular stents[C]//International Conference of Technology on Plasticity. Aachen, Germany,2011.
7 Xu Yongqiang, Jiang Zhihong, Zeng Yanxiang, et al. Comparative analysis on fixed-mandrel drawing and floating-mandrel drawing for thin-walled copper tube[J]. Forging & Stamping Technology,2017,42(6):88(in Chinese).
许永强,姜志宏,曾艳祥,等.薄壁铜管固定芯头拉拔和游动芯头拉拔的对比分析[J].锻压技术,2017,42(6):88.
8 温景林,丁桦,曹富荣.有色金属挤压与拉拔技术[M].北京:化学工业出版社,2007.
9 Tang W D, Zhang S H, Tao L, et al. Die failure analysis of tube drawing with floating plugs[J]. Materials Science & Technology,2012,20(3):109.
10 Xu Y Q, Jiang Z H, Hu P, et al. Influence of process parameters on drawing force in the floating plug vibration drawing process of thin-walled copper tube[J]. Forging & Stamping Technology,2017,42(3):69(in Chinese).
许永强,姜志宏,胡沛,等.工艺参数对薄壁铜管游动芯头振动拉拔过程拉拔力影响分析[J].锻压技术,2017,42(3):69.
11 Rudolf, Kasala, Jozef. The influence of the die and floating plug geometry on the drawing;process of tubing[J]. International Journal of Advanced Manufacturing Technology,2013,65(5-8):1081.
12 Li Y Y. Research on drawing process and properties of AZ31 magne-sium alloy tube with minor diameter and thin wall[J]. Forging & Stamping Technology,2015,40(5):59(in Chinese).
李毓英.AZ31镁合金小直径薄壁管拉拔工艺及性能研究[J].锻压技术,2015,40(5):59.
13 Swiatkowski K, Hatalak R. Study of the new floating-plug drawing process of thin-walled tubes[J]. Journal of Materials Processing Technology,2004,151(1):105.
14 Loginov Y N, Shalaeva M S, Demakov S L, et al. Specific features of tool wear in adaptable drawing of capillary pipes[J]. Journal of Friction & Wear,2014,35(4):304.
15 Rubio E M, Camacho A M, Marcos M, et al. Analysis of the energy vanished by friction in tube drawing processes with a fixed conical inner plug by the upper bound method[J]. Materials & Manufacturing Processes,2008,23(7):690.
16 Yang X J, Sun F H, Zhang Z M, et al. Optimization of drawing parameters for copper tubes with hollow sinking based on FEM simulation[J]. Chinese Journal of Nonferrous Metals,2008,18(12):2245(in Chinese).
杨晓静,孙方宏,张志明,等.基于有限元模拟的空拔铜管拉拔参数的优化[J].中国有色金属学报,2008,18(12):2245.
17 Bramley A N, Smith D J. Tube drawing with a floating plug[J]. Metals Technology,2013,3(1):322.
[1] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[2] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[3] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[4] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed