Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2816-2821    https://doi.org/10.11896/j.issn.1005-023X.2018.16.021
  金属与金属基复合材料 |
超声冲击处理对铝合金焊接应力的影响
贾翠玲1, 陈芙蓉2
1 内蒙古工业大学工程训练教学部,呼和浩特 010051;
2 内蒙古工业大学材料科学与工程学院,呼和浩特 010051
Effect of Ultrasonic Impact Treatment on Welding Stress of Aluminum Alloy
JIA Cuiling1, CHEN Furong2
1 Engineering Training Teaching Department, Inner Mongolia University of Technology, Hohhot 010051;
2 Institution of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051
下载:  全 文 ( PDF ) ( 3058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究超声冲击处理(UIT)对铝合金材料焊接应力的影响,采用有限元分析软件AQAQUS建立了7A52铝合金双丝熔化极隋性气体保护焊(MIG)焊接模型和超声冲击处理耦合模型,得到了冲击后的应力场,分析了冲击前后残余应力分布特点;通过改变冲击针移动速度、冲击位置以及冲击针直径,分析其对焊接应力的影响规律,旨在探讨超声冲击处理对铝合金焊接应力改善的影响规律。计算结果表明,超声冲击处理能够显著改善焊缝和热影响区的焊接残余应力,且超声冲击处理对焊趾处的冲击比对焊缝处冲击产生的压应力数值大、范围宽;随着冲击移动速度的增加,焊接接头处压应力值逐渐减小,且移动速度增加到一定程度将会出现欠处理状态,达不到产生压应力的效果;冲击针直径对焊后残余应力影响较大,随着冲击针直径的增大,其接头处压应力值会增加,且产生的纵向残余压应力区间会增大;经过超声冲击处理后的试验和数值计算表明,材料模型中是否考虑应变率对应力结果影响很大,应该根据实际材料的应变率硬化程度建立准确的材料模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾翠玲
陈芙蓉
关键词:  超声冲击处理  7A52铝合金  残余应力  有限元模拟    
Abstract: In order to explore the influence of stress treated, the finite element model of 7A52 aluminum alloy welded by double wire MIG was established by ultrasonic impact treatment. The coupling model of ultrasonic impact treatment on the welded joint was set up and the residual stress field was obtained after ultrasonic impact treatment. The characteristics of residual stress distribution before and after ultrasonic impact and the influence law of residual stress by changing needle moving speed, treated position and diameter of pin were analyzed. The arm was to explore the influence of residual stress using ultrasonic impact treatment on 7A52 aluminum alloy. The results showed that the ultrasonic impact treatment can improve the surface residual stress of welding seam and heat affected zone significantly. The value and the wide range of compressive stress were larger when treated on weld toe than to weld seam. With the increase of impact moving speed, pressure stress of welding joint decreased. And when moving speed increased to a certain degree which can’t produce the compressive stress. The pin diameter had obvious influence on residual stress of butt welding, and with the increase of pin diameter, compressive stress of welding joint increased, as well as the range of longitudinal residual stress. The results of test and numerical calculation after dealing with the ultrasonic impact revealed that the model of material whether considering strain rate had a great influence on residual stress, and should be based on the actual material strain rate harde-ning degree to establish accurate model.
Key words:  ultrasonic impact treatment    7A52 aluminum alloy    residual stress    finite element simulation
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TG404  
基金资助: 内蒙古自治区自然科学基金资助项目(2017MS0502);内蒙古自治区高等学校科学研究资助项目(NJZY087); 国家自然科学基金(50765003;51165026)
作者简介:  贾翠玲:女,1980年生,博士,高级实验师,主要从事铝合金焊接、表面处理以及数值模拟等研究 E-mail:jialing_jlu2004@163.com
引用本文:    
贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
JIA Cuiling, CHEN Furong. Effect of Ultrasonic Impact Treatment on Welding Stress of Aluminum Alloy. Materials Reports, 2018, 32(16): 2816-2821.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.021  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2816
1 Liu Y, Wang D, Deng C, et al. Influence of re-ultrasonic impact treatment on fatigue behaviors of S690QL welded joints[J]. International Journal of Fatigue,2014,66(6):155.
2 Yekta R T, Ghahremani K, Walbridge S. Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds[J]. International Journal of Fatigue,2013,55(10):245.
3 Berg-Pollack A, Voellmecke F J, Sonsino C M. Fatigue strength improvement by ultrasonic impact treatment of highly stressed spokes of cast aluminium wheels[J]. International Journal of Fatigue,2011,33(4):513.
4 Yildirim H C, Marquis G B, Barsoum Z. Fatigue assessment of high frequency mechanical impact (HFMI)-improved fillet welds by local approaches[J]. International Journal of Fatigue,2013,52(1):57.
5 Yang X, Zhou J, Ling X. Study on plastic damage of AISI 304 stainless steel induced by ultrasonic impact treatment[J]. Materials & Design,2012,36:477.
6 Liu Y, Wang L, Wang D. Finite element modeling of ultrasonic surface rolling process[J]. Journal of Materials Processing Technology,2011,211(12):2106.
7 Guo C, Wang Z, Wang D, et al. Numerical analysis of the residual stress in ultrasonic impact treatment process with single-impact and two-impact models[J]. Applied Surface Science,2015,347:596.
8 Yuan K, Sumi Y. Modelling of ultrasonic impact treatment (UIT) of welded joints and its effect on fatigue strength[J]. Frattura Ed Integrità Strutturale,2015,6(34):476.
9 Klemenz M, Schulze V, Rohr I, et al. Application of the FEM for the prediction of the surface layer characteristics after shot peening[J]. Journal of Materials Processing Technology,2009,209(8):4093.
10 Amarchinta H K, Grandhi R V, Clauer A H, et al. Simulation of residual stress induced by a laser peening process through inverse optimization of material models[J]. Journal of Materials Processing Technology,2010,210(14):1997.
11 Azar A S, Ås S K, Akselsen O M. Determination of welding heat source parameters from actual bead shape[J]. Computational Materials Science,2012,54:176.
12 Fu G, Gu J, Lourenco M I, et al. Parameter determination of double-ellipsoidal heat source model and its application in the multi-pass welding process[J]. Ships & Offshore Structures,2015,10(2):204.
13 Fu G, Gurova T, Lourenco M I, et al. Numerical and experimental studies of residual stresses in multipass welding of high strength shipbuilding steel[J]. Journal of Ship Research,2015,59:1.
14 张丝雨.最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册[M].中国香港:中国科技文化出版社,2005.
15 中国机械工程学会焊接学会.焊接手册第2卷材料的焊接第三版[M].北京:机械工业出版社,2008.
16 Huang J, Yin Z, Lei X. Microstructure and properties of 7A52 Al alloy welded joint[J].Transactions of Nonferrous Metals Society of China,2008,18:804.
17 Wahab M A, Painter M J. Numerical models of gas metal arc welds using experimentally determined weld pool shapes as the representation of the welding heat source[J]. International Journal of Pressure Vessels & Piping,1997,73(2):153.
18 方洪渊,董俊慧,王文先,等.焊接结构学[M].北京:机械工业出版社,2008.
[1] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[2] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[3] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[4] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[5] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[6] 韩志勇, 丘珍珍, 史文新. 强流脉冲电子束粘结层表面改性对热障涂层热震及残余应力的影响[J]. 材料导报, 2018, 32(24): 4303-4308.
[7] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[8] 余志远, 王昌, 汶斌斌, 艾迪, 刘汉源, 于振涛. AZ31镁合金管材游动芯头拉拔有限元模拟[J]. 材料导报, 2018, 32(16): 2778-2782.
[9] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[10] 吕宗敏, 何柏林, 于影霞. 超声冲击对高速列车转向架焊接十字接头超高周疲劳性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 77-81.
[11] 孙长振, 何元东, 毛卫国, 顾阳, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 基于新型鼓包法测试NiFe2O4薄膜的力磁性能*[J]. 《材料导报》期刊社, 2017, 31(15): 145-148.
[12] 陈超, 陈芙蓉, 解瑞军, 路遥. 高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 96-99.
[13] 毛卫国, 杨鹏, 戴翠英, 何远武, 万杰. 脆性涂层材料断裂韧性和残余应力压痕表征技术综述*[J]. 《材料导报》期刊社, 2017, 31(13): 1-11.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed