Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 1-11    https://doi.org/10.11896/j.issn.1005-023X.2017.013.001
  材料综述 |
脆性涂层材料断裂韧性和残余应力压痕表征技术综述*
毛卫国, 杨鹏, 戴翠英, 何远武, 万杰
1 湘潭大学材料科学与工程学院,湘潭 411105;
2 湘潭大学低维材料及其应用技术教育部重点实验室,湘潭 411105
A Review of Vickers Indentation Measurements for Fracture Toughness and Residual Stress of Brittle Coating Systems
MAO Weiguo, YANG Peng, DAI Cuiying, HE Yuanwu, WAN Jie
1 Faculty of Materials Science and Engineering, Xiangtan University, Xiangtan 411105;
2 Key Laboratory of Low Dimensional Materials & Application Technology, Ministry of Education, Xiangtan University, Xiangtan 411105
下载:  全 文 ( PDF ) ( 2200KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多种多样的脆性涂层材料已成为航天航空、国防科技领域的核心关键材料,在国民经济中发挥了巨大作用。断裂韧性和残余应力是评估脆性涂层材料的重要力学性能指标。维氏压痕法是表征脆性涂层材料体系力学性能指标的有效方法之一,得到了广泛的应用。从涂层特点、压痕测试方法、力学模型、实验装备等方面综述了脆性涂层断裂韧性和残余应力压痕测试的研究进展,讨论了力学模型的特点和适用性,并对今后脆性涂层材料压痕表征研究进行了分析展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛卫国
杨鹏
戴翠英
何远武
万杰
关键词:  维氏压痕  断裂韧性  残余应力  脆性涂层    
Abstract: The large variety of brittle coating materials have become crucial materials in the fields of aerospace and national defense science and technology, and have played a great role in national economy.Fracture toughness and residual stress are important mechanical criteria of brittle coating materials. Vickers indentation method is one of the effective methods to characterize the mecha-nical properties of brittle coating materials. In this paper, the research progresses in fracture toughness and residual stress of brittle coatings are reviewed from the aspects of coating characteristics, indentation testing methods, mechanical model and experimental equipment. The characteristics and applicability of indentation mechanics models are discussed in detail. The future development direction of Vickers indentation techniques is also pointed out.
Key words:  Vickers indentation    fracture toughness    residual stress    brittle coating
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  O341  
基金资助: *国家自然科学基金(11572277;11272276;11102177);湖南省科技厅科研条件创新专项重点项目(2011TT1006);湖南省自然科学基金杰出青年基金(14JJ1020)
作者简介:  毛卫国:男,博士,教授,博士研究生导师,研究方向为先进涂层材料制备、性能表征及实验装备研制 E-mail:ssamao@126.com
引用本文:    
毛卫国, 杨鹏, 戴翠英, 何远武, 万杰. 脆性涂层材料断裂韧性和残余应力压痕表征技术综述*[J]. 《材料导报》期刊社, 2017, 31(13): 1-11.
MAO Weiguo, YANG Peng, DAI Cuiying, HE Yuanwu, WAN Jie. A Review of Vickers Indentation Measurements for Fracture Toughness and Residual Stress of Brittle Coating Systems. Materials Reports, 2017, 31(13): 1-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.001  或          https://www.mater-rep.com/CN/Y2017/V31/I13/1
1 Iscan B. Application of ceramic coating for improving the usage of cottonseed oil in a diesel engine[J]. J Energy Institute,2016,89 (1):150.
2 Zhu C, Jian Hai Y U, Guo Y F, et al. Problems of aircraft engine thermal barrier coating and its developing direction[J]. Surf Tech-nol,2016,45(1):13.
3 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(5566):280.
4 Sampath S, Schulz U, Jarligo M O, et al. Processing science of advanced thermal-barrier systems[J]. MRS Bull, 2012,37(10):903.
5 Yang Yazheng, Yang Jialing, Fang Daining. Research progress on the thermal protection materials and structures in hypersonic vehicles[J].Appl Math Mech,2008,29(1):47(in Chinese).
杨亚政,杨嘉陵,方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学,2008,29(1):47.
6 Darolia R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. Int Mater Rev,2013,58(6):315.
7 Mumm D, Evans A I S. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system[J]. Acta Mater,2001,49(12):2329.
8 Lima Moreira F, Kleinberg M, Nunes C, et al. A novel Vickers hardness measurement technique based on adaptive balloon active contour method[J]. Expert Systems Appl,2016,45(C):294.
9 Ma D J, Wang J L, Sun L, et al. Method for identifying Vickers hardness by instrumented indentation curves with Berkovich/Vickers indenter[J]. Experimental Mech,2016,56(5):891.
10 Qiu Z, Liu C, Wang H, et al. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test[J]. J Mech Behav Biomed Mater,2016,64:75.
11 Hermosilla U, Hyde T, Jones I A. Thermal analysis of electron-beam physical vapour deposited thermal barrier coated super-alloy tensile specimens[J]. Proc Inst Mech Engineers, Part L: J Mater Des Appl,2008,222(2):141.
12 Zhao P, Sun C, Zhu X, et al. Fracture toughness measurements of plasma-sprayed thermal barrier coatings using a modified four-point bending method[J]. Surf Coat Technol,2010,204(24):4066.
13 Liu H, Liang L, Wang Y, et al. Fracture characteristics and damage evolution of coating systems under four-point bending[J]. Int J Appl Ceram Technol,2016,13(6):1043.
14 Li C, Jacques S D M, Chen Y, et al. A synchrotron X-ray diffraction deconvolution method for the measurement of residual stress in thermal barrier coatings as a function of depth[J]. J Appl Crystallography,2016,49(6):1904.
15 Garces H F, Senturk B S, Padture N P. In situ Raman spectroscopy studies of high-temperature degradation of thermal barrier coatings by molten silicate deposits[J]. Scripta Mater,2014,76(76):29.
16 Christensen R, Lipkin D, Clarke D R, et al. Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3+ piezospectroscopy[J]. Appl Phys Lett,1996,69(24):3754.
17 Elizalde M, Sanchez J, Martinez-Esnaola J, et al. Interfacial fracture induced by cross-sectional nanoindentation in metal-ceramic thin film structures[J]. Acta Mater,2003,51(14):4295.
18 Cook R F, Lawn B R, Fairbanks C J. Microstructure-strength pro-perties in ceramics: I. Effect of crack size on toughness[J]. J Am Ceram Soc,1985,68(11):604.
19 Sheity D K, Rosenfield A R, Duckworth W H. Indenter flaw geometry and fracture toughness estimates for a glass-ceramic[J]. J Am Ceram Soc,1985,68(10):C-282.
20 Niihara K, Morena R, Hasselman D P H. Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios[J]. J Mater Sci Lett,1982,1(1):13.
21 Gong J, Wang J, Guan Z. Indentation toughness of ceramics: A modified approach[J]. J Mater Sci, 2002,37(4):865.
22 Zhang T Y, Haasen P. The influence of ionized hydrogen on the brittle-to-ductile transition in silicon[J]. Philosophical Magazine A,1989,60(1):15.
23 Zhang T Y, Chen L Q, Fu R. Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture[J]. Acta Mater,1999,47(14):3869.
24 Vandermeulen W, Bosch R W, Snijkers F. The effect of Vickers hardness indentations on the fracture mode in 8mol% yttria-stabilised zirconia[J]. J Mater Sci,2015,50(7):2932.
25 Faisal N H, Ahmed R, Prathuru A K, et al. An improved Vickers indentation fracture toughness model to assess the quality of thermally sprayed coatings[J]. Eng Fracture Mech,2014,128:189.
26 Hong C H, Rickhey F, Jin H L, et al. Characteristics of indentation cracking using cohesive zone finite element techniques for pyramidal indenters[J]. Int J Solids Struct,2014,51(25):4327.
27 Hervas I, Montagne A, Gorp A V, et al. Fracture toughness of glasses and hydroxyapatite: A comparative study of 7 methods by using Vickers indenter[J]. Ceram Int,2016,42(11):12740.
28 Tanaka C B, Harisha H, Baldassarri M, et al. Experimental and finite element study of residual thermal stresses in veneered Y-TZP structures[J]. Ceram Int,2016,42(7):9214.
29 Song K, Xu Y, Zhao N, et al. Evaluation of fracture toughness of tantalum carbide ceramic layer: A vickers indentation method[J]. J Mater Eng Perform,2016,25(7):1.
30 Marshall D, Lawn B. An indentation technique for measuring stresses in tempered glass surfaces[J]. J Am Ceram Soc,1977,60(1-2):86.
31 Lawn B R, Evans A, Marshall D. Elastic/plastic indentation damage in ceramics: The median/radial crack system[J]. J Am Ceram Soc,1980,63(9-10):574.
32 Evans A G, Hutchinson J W. On the mechanics of delamination and spalling in compressed films[J]. Int J Solids Struct,1984,20(5):455.
33 Chicot D, Démarécaux P, Lesage J. Apparent interface toughness of substrate and coating couples from indentation tests[J]. Thin Solid Films,1996,283(1):151.
34 Abbas S Z, Khalid F A, Zaigham H. Indentation fracture toughness behavior of FeCo-based bulk metallic glass intrinsic composites[J]. J Non-Crystalline Solids,2017,457:86.
35 Fakolujo O, Merati A, Bielawski M, et al. Influence of mechanical surface treatments on the indentation fracture toughness of glass infiltrated zirconia toughened alumina "GI-ZTA" disks[J]. Matéria,2016,12(12):420.
36 Chiang S S, Marshall D B, Evans A G. The response of solids to elastic/plastic indentation. I. Stresses and residual stresses[J]. J Appl Phys,1982,53(1):298.
37 Lawn B R, Fuller E R. Equilibrium penny-like cracks in indentation fracture [J]. J Mater Sci,1975,10(12):2016.
38 龚江宏. 陶瓷材料断裂力学[M]. 北京:清华大学出版社,2001:101.
39 Yoffe E H. Elastic stress fields caused by indenting brittle materials[J]. Philosophical Magazine A,1982,46(4):617.
40 Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements[J]. J Am Ceram Soc,1981,64(9):533.
41 Ponton C B, Rawlings R D. Vickers indentation fracture toughness test Part 1 Review of literature and formulation of standardised indentation toughness equations[J]. Mater Sci Technol,1989,5(9):865.
42 Rios C T, Coelho A A, Batista W W, et al. ISE and fracture toughness evaluation by Vickers hardness testing of an Al3Nb-Nb2Al-AlNbNi in situ composite[J]. J Alloys Compd,2009,472(1-2):65.
43 Chicot D, Duarte G, Tricoteaux A, et al. Vickers indentation fracture (VIF) modeling to analyze multi-cracking toughness of titania, alumina and zirconia plasma sprayed coatings[J]. Mater Sci Eng A,2009,527(1-2):65.
44 Lube T. Indentation crack profiles in silicon nitride[J]. J Eur Ceram Soc,2001,21(2):211.
45 Houdková Š, Kaš parová M. Experimental study of indentation fracture toughness in HVOF sprayed hardmetal coatings[J]. Eng Fracture Mech,2013,110:468.
46 Lawn B, Swain M. Microfracture beneath point indentations in brittle solids[J]. J Mater Sci,1975,10(1):113.
47 Laugier M. New formula for indentation toughness in ceramics[J]. J Mater Sci Lett,1987,6(3):355.
48 Evans A G, Charles E A. Fracture toughness determinations by indentation[J]. J Am Ceram Soc,1976,59(7-8):371.
49 Lankford J. Indentation microfracture in the Palmqvist crack regime: Implications for fracture toughness evaluation by the indentation method[J]. J Mater Sci Lett,1982,1(11):493.
50 Blendell J E. The origins of internal stresses in polycrystalline Al2O3 and their effects on mechanical properties[J]. Massachusetts Institute of Technology,1979,123(1):617.
51 Sakardeliormanli A, Güden M. Microhardness and fracture toughness of dental materials by indentation method[J]. J Biomed Mater Res Part B:Appl Biomater,2006,76(2):257.
52 Faisal N H, Reuben R L, Ahmed R. An improved measurement of Vickers indentation behaviour through enhanced instrumentation[J]. Measurement Sci Technol,2011,22(1):015703.
53 Marshall D, Lawn B. Residual stress effects in sharp contact crac-king[J]. J Mater Sci,1979,14(8):2001.
54 Marshall D, Lawn B R, Chantikul P. Residual stress effects in sharp contact cracking. II Strength degradation[J]. J Mater Sci,1979,14:2225.
55 Hivart P, Crampon J. Interfacial indentation test and adhesive fracture characteristics of plasma sprayed cermet Cr3C2/Ni-Cr coatings[J]. Mech Mater,2007,39(11):998.
56 He Yuanwu. A modified indentation method and characterization of thermal barrier coatings under high-temperature by Vickers indentation[D].Xiangtan:Xiangtan University, 2016(in Chinese).
何远武. 热障涂层体系压痕断裂力学模型及高温压痕测试分析[D]. 湘潭: 湘潭大学,2016.
57 Wan J, Zhou M, Yang X S, et al. Fracture characteristics of freestanding 8wt% Y2O3-ZrO2 coatings by single edge notched beam and Vickers indentation tests[J]. Mater Sci Eng A,2013,581:140.
58 Jordan D, Faber K. X-ray residual stress analysis of a ceramic thermal barrier coating undergoing thermal cycling[J]. Thin Solid Films,1993,235(1):137.
59 Chen Q, Mao W G, Zhou Y C, et al. Effect of Young′s modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction[J]. Appl Surf Sci,2010,256(23):7311.
60 Mao W, Wan J, Dai C, et al. Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique[J]. Surf Coat Technol,2012,206(21):4455.
61 Lesage J, Chicot D. Role of residual stresses on interface toughness of thermally sprayed coatings[J]. Thin Solid Films,2002,415(1):143.
62 Kim S S, Chae Y H, Choi S Y. Characteristics evaluation of plasma sprayed ceramic coatings by nano/micro-indentation test[J]. Tribo-logy Lett,2004,17(3):663.
63 Mao W, Wu D, Yao W, et al. Multiscale monitoring of interface failure of brittle coating/ductile substrate systems: A non-destructive evaluation method combined digital image correlation with acoustic emission[J]. J Appl Phys,2011, 110(8):084903.
64 Mao W, Shen Y, Lu C. Deformation behavior and mechanical pro-perties of polycrystalline and single crystal alumina during nanoindentation[J]. Scripta Mater,2011,65(2):127.
65 毛卫国, 万杰, 陈强, 等. 压痕法测试脆性材料的硬度、断裂韧性和残余应力的装置: 中国, CN102393341A[P]. 2012-03-28.
66 毛卫国, 戴翠英, 何远武, 等. 脆性材料断裂韧性和残余应力原位同步测试方法及装置: 中国, CN104075941A[P]. 2014-10-01.
67 Araujo P, Chicot D, Staia M, et al. Residual stresses and adhesion of thermal spray coatings[J]. Surf Eng,2005,21(1): 35.
68 Chicot D, Marot G, Araujo P, et al. Effect of some thermal treatments on interface adhesion toughness of various thick thermal spray coatings[J]. Surf Eng,2006,22(5):390.
69 Chicot D, Araujo P, Horny N, et al. Application of the interfacial indentation test for adhesion toughness determination[J]. Surf Coat Technol,2005,200(1-4):174.
70 Liang K M, Orange G, Fantozzi G. Evaluation by indentation of fracture toughness of ceramic materials[J]. J Mater Sci,1989,25(1):207.
71 Marot G, Lesage J, Démarécaux P, et al. Interfacial indentation and shear tests to determine the adhesion of thermal spray coatings[J]. Surf Coat Technol,2006,201(5):2080.
72 Marot G, Démarécaux P, Lesage J, et al. The interfacial indentation test to determine adhesion and residual stresses in NiCr VPS coatings[J]. Surf Coat Technol,2008,202(18):4411.
73 Khan A N, Lu J, Liao H. Effect of residual stresses on air plasma sprayed thermal barrier coatings[J]. Surf Coat Technol,2003,168(2-3):291.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[3] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[4] 林忠亮, 白清顺, 唐伟, 吴保全, 刘烨欣, 兰洋. 压合衬套冷挤压强化的残余应力的数值模拟[J]. 材料导报, 2024, 38(3): 22070260-8.
[5] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[6] 陈栋梁, 雷子萱, 徐力, 陈双, 刘育红, 强军锋. 热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化[J]. 材料导报, 2024, 38(16): 23050095-8.
[7] 罗军, 李楠, 王曦, 刘昌奎. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报, 2024, 38(11): 22100300-13.
[8] 耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
[9] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[10] 姚三成, 赵海, 刘学华, 江波, 邹强, 徐康. 中碳含钒车轮钢中的晶内铁素体及其对断裂韧性的影响[J]. 材料导报, 2023, 37(22): 22050092-6.
[11] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[12] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[13] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[14] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[15] 王衍行, 李现梓, 韩韬, 肖雷, 何坤, 祖成奎. 高强高韧玻璃的研究进展[J]. 材料导报, 2022, 36(21): 20090229-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed