Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23030229-9    https://doi.org/10.11896/cldb.23030229
  金属与金属基复合材料 |
AlN/Cu钎焊接头残余应力的数值模拟研究
闾川阳1, 李科桥1, 盛剑翔2, 顾小龙3, 石磊4, 杨建国1, 贺艳明1,*
1 浙江工业大学机械工程学院化工机械设计研究所,杭州 310014
2 浙江金顺智能设备有限公司,浙江 金华 321000
3 浙江省钎料材料与技术重点实验室,杭州 310030
4 浙江亚通新材料股份有限公司,杭州 310030
Numerical Simulation Study of Residual Stress in AlN/Cu Brazed Joints
LYU Chuanyang1, LI Keqiao1, SHENG Jianxiang2, GU Xiaolong3, SHI Lei4, YANG Jianguo1, HE Yanming1,*
1 Institute of Process Equipment and Control Engineering, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2 Zhejiang Jinshun Intelligent Equipment Co., Ltd., Jinhua 321000,Zhejiang, China
3 Zhejiang Province Key Laboratory of Soldering & Brazing Materials and Technology, Hangzhou 310030, China
4 Zhejiang YaTong Materials Co., Ltd., Hangzhou 310030, China
下载:  全 文 ( PDF ) ( 18184KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氮化铝(AlN)陶瓷可用于高压大功率绝缘栅双极型功率管(IGBT)的封装,并以表面覆铜(Cu)的方式实现散热功能。但AlN和Cu存在巨大的物性差异,易在连接中残留较大的残余应力。针对AlN/Cu钎焊接头的残余应力进行有限元数值模拟研究,探究压力载荷、冷却速度以及钎料厚度对接头残余应力的影响规律。结果表明,在所研究的范围内,AlN/Cu钎焊接头中最大轴向应力均出现在AlN陶瓷棱边靠近钎料金属层处,最大剪切应力则出现在靠近外侧边的AlN陶瓷与钎料金属层界面处。压力载荷降低、冷却速度加快和钎料层厚度增加均会增大最大轴向应力和剪切应力,但应力分布较为一致。本研究可为大功率IGBT覆Cu AlN陶瓷基板的高可靠性封装提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闾川阳
李科桥
盛剑翔
顾小龙
石磊
杨建国
贺艳明
关键词:  绝缘栅双极型功率管(IGBT)  AlN/Cu接头  钎焊  数值模拟  残余应力    
Abstract: Aluminum Nitride (AlN) ceramics have been considered as the promising material for packaging high-voltage and high-power insulated gate bipolar transistor (IGBT), where copper (Cu) coating is covered on the AlN ceramic to enhance the heat dissipation. However, the wide discrepancies in physical properties between AlN and Cu often enable severe residual stress after brazing. To address this issue, this study utilizes finite element numerical simulations to investigate the effects of loading, cooling rate, and filler alloy thickness on the residual stress in AlN/Cu brazed joints. The results show that the maximum axial stress in the AlN/Cu brazed joint appears on the AlN ceramic edge adjacent to the brazing filler alloy, while the maximum shear stress is on the interface between the AlN ceramic and brazing filler alloy, where is near the outer edge. Both the maximum axial and shear stresses increase with the decrease in loading, and the increase in cooling rate and filler alloy thickness. The stress distribution remains relatively consistent for all investigated conditions. The obtained results can provide the theoretical guidance for the high-reliability packaging of Cu-coated AlN ceramic substrates in high-power IGBTs.
Key words:  insulated gate bipolar transistor (IGBT)    AlN/Cu joint    brazing    numerical simulation    residual stress
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  V261.3+4  
基金资助: 浙江省重点研发计划项目(2021C01178);国家磁约束核聚变能发展研究专项(2019YFE03100400);国家自然科学基金 (52175368; 52105162; 52005445);浙江省自然科学基金(LQ21E050015)
通讯作者:  *贺艳明,浙江工业大学机械学院研究员、博士研究生导师。2006年安徽工程大学材料成型与控制工程专业本科毕业,2008年哈尔滨工业大学材料学专业硕士毕业,2012年哈尔滨工业大学材料学专业博士毕业。中国机械工程学会焊接青委会委员,浙江省焊接学会秘书长,美国西北大学高级访问学者。多年来一直从事新材料及异种材料连接方面的研究工作,取得了多项重要的学术成果。主持、承担了国家重点研发计划青年科学家项目、国家自然科学基金面上/青年项目、浙江省重点研发计划项目等10余项。发表SCI/EI论文100余篇,授权发明专利20余项。heyanming@zjut.edu.cn   
作者简介:  闾川阳,浙江工业大学讲师、硕士研究生导师。2014年浙江工业大学过程装备与控制工程专业本科毕业,2020年1月于浙江工业大学化工过程机械专业获得工学博士学位。2020年4月,进入浙江工业大学机械工程学院化工机械设计研究所从事教学科研工作,主要从事高温合金损伤与寿命评价方法研究。中国机械工程学会材料分会高温材料及强度专委会委员。目前已发表SCI/EI论文20余篇,申请/授权国家发明专利10余项。主持/参与国家级与省部级科研项目10余项。
引用本文:    
闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
LYU Chuanyang, LI Keqiao, SHENG Jianxiang, GU Xiaolong, SHI Lei, YANG Jianguo, HE Yanming. Numerical Simulation Study of Residual Stress in AlN/Cu Brazed Joints. Materials Reports, 2024, 38(16): 23030229-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030229  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23030229
1 Liu G Y, Wang Y G, Luo H H, et al. Electric Power, 2020, 53(12), 55 (in Chinese).
刘国友, 王彦刚, 罗海辉, 等. 中国电力, 2020, 53(12), 55.
2 Pirondi A, Nicoletto G, Cova P, et al. Microelectronics Reliability, 2000, 40(7), 1163.
3 Xu D, Lu H, Huang L, et al. IEEE Transactions on Industry Applications, 2002, 38(5), 1426.
4 Zhang Y, Wang W M, Zhang Y. Electronic Components and Materials, 2021, 40(11), 1151 (in Chinese).
张阳, 王维民, 张杨. 电子元件与材料, 2021, 40(11), 1151.
5 Wang R, Luo J, Yao E X, et al. Semiconductor Technology, 2021, 46(11), 887 (in Chinese).
王蕤, 骆健, 姚二现, 等. 半导体技术, 2021, 46(11), 887.
6 Wang L L, Ma B Y, Liu C M, et al. Refractories, 2022, 56(2), 180 (in Chinese).
王露露, 马北越, 刘春明, 等. 耐火材料, 2022, 56(2), 180.
7 Slack G A, Tanzilli R A, Pohl R O, et al. Journal of Physics and Chemistry of Solids, 1987, 48(7), 641.
8 Belyakov A V, Kuznetsova I G, Kuftyrev R Y, et al. Glass and Ceramics, 2012, 69(7-8), 270.
9 Wang H R, Li Y L, Li Z L, et al. Transactions of the China Welding Institution, 2022, 43(1), 7 (in Chinese).
王浩然, 李源梁, 李卓霖, 等. 焊接学报, 2022, 43(1), 7.
10 Schulz-Harder J. Microelectronics Reliability, 2003, 43(3), 359.
11 Dong G, Lei G T, Chen X, et al. Soldering & Surface Mount Technology, 2009, 21(3), 10.
12 Dang J J, Hu Z S, Guo J, et al. Vacuum Electronics, 2019(3), 59 (in Chinese).
党军杰, 胡竹松, 郭军, 等. 真空电子技术, 2019(3), 59.
13 He D P, Gao H, Zhang J J, et al. Journal of Inorganic Materials, 2019, 34(9), 947 (in Chinese).
何端鹏, 高鸿, 张静静, 等. 无机材料学报, 2019, 34(9), 947.
14 Ong F S, Tobe H, Sato E. Materials Science and Engineering:A, 2019, 762, 138096.
15 Niu G B, Wang D P, Yang Z W, et al. Ceramics International, 2017, 43(1), 439.
16 Goetz M, Kuhn N, Lehmeier B, et al. PCIM Europe Conference Proceeding. Nuremberg, Germany, 2013, pp.14.
17 Deng Y, Zhang Y M, Zhou Y F. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1), 147 (in Chinese).
邓亚, 张宇民, 周玉锋. 力学学报, 2022, 54(1), 147.
18 Liu D, Liu J H, Zhou Y H, et al. Journal of Materials Engineering, 2018, 46(3), 61 (in Chinese).
刘多, 刘景和, 周英豪, 等. 材料工程, 2018, 46(3), 61.
19 Zhou W L. Research on active brazing process and stress simulation of MgAl2O4 transparent ceramic/Kovar alloy. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
周雯露. MgAl2O4透明陶瓷/Kovar合金活性钎焊工艺研究及应力模拟. 硕士学位论文, 哈尔滨工业大学, 2020.
20 Wang T P. Ag-Cu-Ti+TiNp brazing Si3N4 ceramic/42CrMo steel microstructure and numerical simulation. Master’s Thesis, Harbin Institute of Technology, China, 2012 (in Chinese).
王天鹏. Ag-Cu-Ti+TiNp钎焊Si3N4陶瓷/42CrMo钢组织性能和数值模拟研究. 硕士学位论文, 哈尔滨工业大学, 2012.
21 Li Y F, Yang J G, Ji S D, et al. Transactions of the China Welding Institution, 2011, 32(8), 109 (in Chinese).
李雅范, 杨建国, 姬书得, 等. 焊接学报, 2011, 32(8), 109.
22 Li J P, Tong J, He N F, et al. Hot Working Technology, 2018, 47(13), 206 (in Chinese).
李健平, 童杰, 何宁发, 等. 热加工工艺, 2018, 47(13), 206.
23 Xia C H. Finite element analysis of brazing residual stress of stainless steel core plate. Master’s Thesis, Hunan University, China, 2019 (in Chinese).
夏传虎. 不锈钢芯板钎焊残余应力的有限元分析. 硕士学位论文, 湖南大学, 2019.
24 Zhang S, Yang H, Gao K, et al. Microelectronics Reliability, 2019, 98, 49.
25 Liu X, Zhang X Y, Lu Y J, et al. Vacuum Electronics, 2007, 20(4), 56 (in Chinese).
刘鑫, 张小勇, 陆艳杰, 等. 真空电子技术, 2007, 20(4), 56.
26 Terasaki N, Ohashi T, Nagatomo Y, et al. Journal of Materials Science:Materials in Electronics, 2019, 30, 6552.
27 Kim J, Kang S. Journal of Alloys and Compounds, 2012, 528, 20.
28 Wang T, Ivas T, Lee W, et al. Ceramics International, 2016, 42(6), 7080.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[3] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[4] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[5] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[6] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[7] 林忠亮, 白清顺, 唐伟, 吴保全, 刘烨欣, 兰洋. 压合衬套冷挤压强化的残余应力的数值模拟[J]. 材料导报, 2024, 38(3): 22070260-8.
[8] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[9] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[10] 吴船江, 张亮, 王曦, 陈晨, 卢晓. 陶瓷钎焊用钎料的国内外研究进展[J]. 材料导报, 2024, 38(16): 23050146-17.
[11] 陈栋梁, 雷子萱, 徐力, 陈双, 刘育红, 强军锋. 热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化[J]. 材料导报, 2024, 38(16): 23050095-8.
[12] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[13] 罗军, 李楠, 王曦, 刘昌奎. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报, 2024, 38(11): 22100300-13.
[14] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[15] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed