Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23040330-10    https://doi.org/10.11896/cldb.23040330
  高分子与聚合物基复合材料 |
纳米流体中温热稳定性研究进展
姜琴, 刁珂龙, 杨谋存*, 朱跃钊
南京工业大学机械与动力工程学院,南京 211816
Advances in the Research of Medium Temperature Thermal Stability of Nanofluids
JIANG Qin, DIAO Kelong, YANG Moucun*, ZHU Yuezhao
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
下载:  全 文 ( PDF ) ( 3216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米流体作为一种新型强化传热介质,相较于传统流体,具有较高的导热系数和单相对流传热系数,能实现更高效的能量利用。但是常温下纳米流体存在随静置时间的延长而发生聚集沉降的问题。而在中温下纳米流体中纳米颗粒的运动机理更为复杂,导致其更难长期保持分散稳定性。纳米流体的不稳定性会导致其性能的恶化,从而使其难以实现大规模工程应用。因此,对纳米流体稳定性的研究具有重要的现实意义。本文对导致纳米流体失稳的因素进行了总结,归纳了增强纳米流体稳定性的方法,并指出了中温下纳米流体热稳定性研究的不足之处;此外,还从微观机理的角度分析了纳米流体中纳米颗粒的布朗运动、热泳和光泳等对其稳定性的影响,并对比了计算流体力学、格子玻尔兹曼方法和分子动力学等方法对纳米流体聚集沉降过程模拟的优缺点;最后,展望了纳米流体在中温领域的应用前景以及潜在困难。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜琴
刁珂龙
杨谋存
朱跃钊
关键词:  纳米流体  中温  聚集分散  稳定性  数值模拟    
Abstract: As a new type of enhanced heat transfer medium, nanofluid has higher thermal conductivity and single-phase convective heat transfer coefficient than traditional fluid, which can realize more efficient energy utilization. However, at room temperature, the accumulation and sedimentation of nanofluid occur with the increase of standing time. The motion mechanism of nanoparticles in the nanofluid at medium temperature is more complex, which makes it more difficult to maintain long-term dispersion stability. The instability of nanofluid will lead to the deterioration of its performance, which makes it difficult to realize large-scale engineering applications. Therefore, it is of great practical significance to study the stability of nanofluid. In this paper, the factors leading to the instability of nanofluid were summarized, the methods to enhance the stability of nanofluid were concluded, and the shortcomings of the research on the thermal stability of nanofluid at medium temperature were pointed out. In addition, the effects of Brownian motion, thermophoresis and photophoresis of nanoparticles in nanofluid on the stability were analyzed from the perspective of microscopic mechanism, and the advantages and disadvantages of computational fluid dynamics, lattice Boltzmann method and molecular dynamics methods for the simulation of the aggregation and sedimentation process of nanofluid were compared. Finally, the application prospect and potential difficulties of nanofluid in the field of medium temperature were forecasted.
Key words:  nanofluid    medium temperature    aggregation and dispersion    stability    numerical simulation
发布日期:  2023-09-06
ZTFLH:  TK519  
通讯作者:  *杨谋存,南京工业大学机械与动力工程学院教授、硕士研究生导师。2001年7月至2004年6月在江苏大学读硕士,获车辆工程专业工学硕士学位;2004年6月2007年6月在南京航空航天大学读博士,获车辆工程工学博士学位。2007年6月在南京工业大学机械与动力工程学院工作至今,2013年2月至2014年2月受邀在新南威尔士大学做访问学者。目前主要从事太阳能热利用技术、纳米流体及稳定性、优化设计理论与方法等研究工作。主持国家重点研发计划项目子课题、国家自然科学基金、江苏省自然科学基金、江苏博士后基金和江苏省高校自然科学研究等项目各1项。参与获得中国民用航空协会科学技术奖三等奖一项。申请发明专利6项,发表学术论文50余篇,其中SCI和EI检索20余篇。young_2004@njtech.edu.cn   
作者简介:  姜琴,2021年6月于四川轻化工大学获得工学学士学位。现为南京工业大学机械与动力工程学院21届硕士研究生。目前主要研究领域为太阳能热利用之纳米流体稳定性。
引用本文:    
姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
JIANG Qin, DIAO Kelong, YANG Moucun, ZHU Yuezhao. Advances in the Research of Medium Temperature Thermal Stability of Nanofluids. Materials Reports, 2023, 37(S1): 23040330-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040330  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23040330
1 Liu C Q, Wang D B, He Y, et al. Chinese Science Bulletin, 2019, 64(Z2), 3041 (in Chinese).
刘长青, 王德兵, 何燕, 等. 科学通报, 2019, 64(Z2), 3041.
2 Sainz-mañas M, Bataille F, Caliot C, et al. Energy, 2022, 260, 124916.
3 Diao K L, Yang M C, Zhao D, et al. Powder Technology, 2023, 418, 118310.
4 Lenin R, Joy P A, Bera C. Journal of Molecular Liquids, 2021, 338, 116929.
5 Gupta M, Singh V, Kumar R, et al. Renewable and Sustainable Energy Reviews, 2017, 74, 638.
6 Fan W, Zhong F. Thermochimica Acta, 2022, 712, 179229.
7 Younes H, Mao M, Sohel S M, et al. Applied Thermal Engineering, 2022, 207, 118202.
8 Pryazhnikov M I, Minakov A V, Rudyak V Y, et al. International Journal of Heat and Mass Transfer, 2017, 104, 1275.
9 Hemmat E M, Kiannejad Amiri M, Alirezaie A. Journal of Thermal Analysis and Calorimetry, 2018, 134(2), 1113.
10 Zuo X H, Song L J, Guan C F, et al. Materials Reports, DOI:11896/cldb.22050317(in Chinese).
左夏华, 宋立健, 关昌峰, 等. 材料导报, DOI:11896/cldb.22050317.
11 Zhou L, Ma H H, Ma S X, et al. Materials Reports, 2018, 32(15), 2576(in Chinese).
周璐, 马红和, 马素霞, 等. 材料导报, 2018, 32(15), 2576.
12 Yang D L, Ji X, Chen Y, et al. Materials Reports, 2020, 34(21), 21115(in Chinese).
杨德龙, 季旭, 陈颖, 等. 材料导报, 2020, 34(21), 21115.
13 Judran H K, Al-hasnawi A G T, AL Zubaidi F N, et al. Applied Sciences, 2022, 12(5), 2655.
14 Gamal M, Radwan M S, Elgizawy I G, et al. Journal of Molecular Liquids, 2023, 369, 120867.
15 Begum E E, Murshed S M S. Ultrasonics Sonochemistry, 2021, 72, 105424.
16 Yang B, Shi Y, Ma X, et al. Journal of Molecular Liquids, 2023, 377, 121530.
17 Zhang H, Qing S, Xu J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128492.
18 Kumar Kanti P, Sharma P, Sharma K V, et al. Journal of Energy Che-mistry, 2023, 82(7), 359.
19 Girhe N, Botewad S, Pawar P, et al. Indian Journal of Physics, 2023, 97(4), 1137.
20 Maheshwary P B, Handa C C, Nemade K R. Applied Thermal Engineering, 2017, 119, 79.
21 Adam S A, Ju X, Zhang Z, et al. Applied Thermal Engineering, 2020, 175, 115394.
22 Joseph A, Thomas S. Renewable Energy, 2022, 181, 725.
23 Dong J, Zheng Q, Xiong C, et al. International Journal of Thermal Sciences, 2022, 176, 107533.
24 Mo Z Y, Wu Z Y, Wang X, et al. Materials Reports, 2014, 28(14), 28(in Chinese).
莫子勇, 吴张永, 王娴, 等. 材料导报, 2014, 28(14), 28.
25 Ma L X, Chang Q, Qiu J Y, et al. Materials Reports, 2015, 29(8), 79 (in Chinese).
马连湘, 常强, 邱金友, 等. 材料导报, 2015, 29(8), 79.
26 Yu F, Chen Y, Liang X, et al. Progress in Natural Science: Materials International, 2017, 27(5), 531.
27 Chen W, Zou C, Li X. Solar Energy Materials and Solar Cells, 2019, 200, 109931.
28 Yang M C, Wang S, Zhu Y, et al. Energies, 2020, 13(4), 876.
29 Nikolov A, Lee J, Wasan D. Advances in Colloid and Interface Science, 2023, 313, 102847.
30 Yu F, Chen Y, Liang X, et al. Progress in Natural Science: Materials International, 2017, 27(5), 531.
31 Sharaf O Z, Taylor R A, Abu-nada E. Physics Reports, 2020, 867, 1.
32 Sheng L S, Chen Z Q. Journal of Southeast University (Natural Science Edition), 2021, 51(4), 700 (in Chinese).
生丽莎, 陈振乾. 东南大学学报(自然科学版), 2021, 51(4), 700.
33 Chavez P E A, Finotti F, Largiller G, et al. Applied Thermal Engineering, 2022, 211, 118346.
34 Arshad M, Hussain A, Hassan A, et al. Nanomaterials, 2022, 12(7), 1204.
35 Zainal N A, Nazar R, Naganthran K, et al. Nanomaterials, 2022, 12(10), 1771.
36 Chakraborty S. Applied Thermal Engineering, 2020, 174, 115259.
37 Mohd Saidi N, Abdullah N, Norizan M N, et al. Nanomaterials, 2022, 12(21), 3922.
38 Sadri R, Ahmadi G, Togun H, et al. Nanoscale Research Letters, 2014, 9(1), 151.
39 Hendraningrat L, Torsæter O. Transport in Porous Media, 2015, 108(3), 679.
40 Dhinesh Kumar D, Valan Arasu A. Renewable and Sustainable Energy Reviews, 2018, 81, 1669.
41 Mehta B, Subhedar D, Panchal H, et al. Journal of Molecular Liquids, 2022, 364, 120034.
42 Zhang H, Qing S, Zhai Y, et al. Powder Technology, 2021, 377, 748.
43 Sezer N, Atieh M A, Koç M. Powder Technology, 2019, 344, 404.
44 Dos Santos C C, Viali W R, Viali E S N, et al. Journal of Thermal Analysis and Calorimetry, 2021, 146(1), 509.
45 Sharaf O Z, Taylor R A, Abu-Nada E. Physics Reports, 2020, 867, 1.
46 Mesgari S, Taylor R A, Hjerrild N E, et al. Solar Energy Materials and Solar Cells, 2016, 157, 652.
47 Cherpinski A, Gozutok M, SasmazeL H T, et al. Nanomaterials, 2018, 8(7), 469.
48 Wang W, Wu Z, Li B, et al. Journal of Thermal Analysis and Calorimetry, 2019, 136(3), 1037.
49 Xia Y. Research on the flow and heat transfer characteristics of complex fluid and the motion behavior of suspended particles. Master's Thesis, Zhejiang University, China, 2019 (in Chinese).
夏懿. 复杂流体流动与传热及内含颗粒运动特性的研究. 硕士学位论文, 浙江大学, 2019.
50 Akbar T, Batool S, Nawaz R, et al. Advances in Mechanical Engineering, DOI:10. 1177/1687814017740266.
51 Hosseini S H S, Ghadiri M. Applied Mathematical Modelling, 2021, 92, 594.
52 Wang L H, Xiang J, Li J X. Materials Reports, 2011, 25(S1), 17 (in Chinese).
王良虎, 向军, 李菊香. 材料导报, 2011, 25(S1), 17.
53 Reshadi M, Saidi M H. Chemical Engineering Science, 2018, 190, 443.
54 Sarparast H, Alibeigloo A, Kesari S S, et al. Applied Mathematical Modelling, 2022, 108, 92.
55 Azimi S S, Kalbasi M. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(4), 263.
56 Mukherjee S, Mishra P C, Chaudhuri P, et al. Pramana, 2020, 94(1), 150.
57 Cui X, Wang J, Xia G. Nanoscale, 2021, 14(1), 99.
58 Ghosh M M, DAS S. Applied Physics A, 2020, 126(9), 694.
59 Borzuei M, Baniamerian Z. International Journal of Heat and Mass Transfer, 2020, 150, 119299.
60 Hazarika S, Ahmed S. Mathematics and Computers in Simulation, 2022, 192, 452.
61 Lin Y, Jiang Y. International Journal of Heat and Mass Transfer, 2018, 123, 569.
62 Irfan M. Numerical Methods for Partial Differential Equations, 2023, 39(2), 1030.
63 Qian Y, Neale S L, Marsh J H. Scientific Reports, 2020, 10(1), 19169.
64 Fu H, Huang Y, Gao L. Physics Letters A, 2013, 377(39), 2815.
65 Liu Y F. Study of optimal nanofluidis, optical properties of nanoparticles in PV/T systems and photophoretic lift forces on particles. Master's Thesis, Beijing University of Chemical Technology, China, 2020 (in Chinese).
刘亚飞. 基于纳米流体的光伏光热系统实验研究及颗粒光学和力学性能分析. 硕士学位论文, 北京化工大学, 2020.
66 Fu H L. Theoretical study on thermal physics and transport characteristics of nano-fluids. Ph. D. Thesis, Soochow University, China, 2013 (in Chinese).
傅怀梁. 纳米流体热物理及泳输运特性理论研究. 博士学位论文, 苏州大学, 2013.
67 Soong C Y, Li W K, Liu C H, et al. Optics Express, 2010, 18(3), 2168.
68 Li W K, Soong C Y, Tzeng P Y, et al. Microfluidics and Nanofluidics, 2011, 10(1), 199.
69 Chang Y C, Keh H J. Journal of Aerosol Science, 2012, 50, 1.
70 Peddie W. Nature, 1927, 120(3031), 799.
71 Khatun S, Nasrin R. Journal of Naval Architecture and Marine Enginee-ring, 2021, 18(2), 217.
72 Wakif A, Chamkha A, Journal of Thermal Analysis and Calorimetry, 2021, 143(2), 1201.
73 Goudarzi S, Shekaramiz M, Omidvar A, et al. Powder Technology, 2020, 375, 493.
74 Zhou Y, Zhu C, Bian K, et al. Electrophoresis, 2021, 42(21-22), 2391.
75 Lee J H, Hwang K S, Jang S P, et al. International Journal of Heat and Mass Transfer, 2008, 51(11-12), 2651.
76 Mahbubul I M, Elcioglu E B, Saidur R, et al. Ultrasonics Sonochemistry, 2017, 37, 360.
77 Ismail H, Sulaiman M Z, Aizzat M A H. IOP Conference Series: Materials Science and Engineering, 2020, 788(1), 012091.
78 Afzal A, Khan S A, Ahamed S C. Materials Research Express, 2019, 6(11), 1150d8.
79 Asadi A, Asadi M, Siahmargoi M, et al. International Journal of Heat and Mass Transfer, 2017, 108, 191.
80 Shah J, Ranjan M, Gupta S K, et al. In: 9th National Conference on Thermophysical Properties (NCTP-2017). Tamil Nadu, India, 2018, pp.020008.
81 Wang S, Yang M C, Zhu Y Z. Chinese Journal of Ceramics, 2020, 39(2), 631(in Chinese).
王洒, 杨谋存, 朱跃钊. 硅酸盐通报, 2020, 39(2), 631.
82 Jia D, Cai S H, Li X Q, et al. Materials Reports, 2021, 35(S2), 540(in Chinese).
贾东, 蔡淑红, 李献强, 等. 材料导报, 2021, 35(S2), 540.
83 Kumar R S, Chaturvedi K R, Iglauer S, et al. Journal of Petroleum Science and Engineering, 2020, 195, 107634.
84 Shanbedi M, Zeinali H S, Maskooki A. Journal of Thermal Analysis and Calorimetry, 2015, 120(2), 1193.
85 Hordy N, Rabilloud D, Meunier J L, et al. Solar Energy, 2014, 105, 82.
86 Amiri A, Shanbedi M, Amiri H, et al. Applied Thermal Engineering, 2014, 71(1), 450.
87 Shanbedi M, Zeinali H S, Maskooki A. Journal of Thermal Analysis and Calorimetry, 2015, 120(2), 1193.
88 Liu X, Zhao Y, Li Q, et al. Journal of Molecular Liquids, 2016, 219, 1100.
89 Zhang H, Qing S, Xu J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128492.
90 Amiri A, Shanbedi M, Amiri H, et al. Applied Thermal Engineering, 2014, 71(1), 450.
91 Hordy N, Meunier J L, Coulombe S. Plasma Processes and Polymers, 2015, 12(6), 533.
92 Khurana D, Subudhi S. Journal of Thermal Science and Engineering Applications, 2021, 13(5), 051014.
93 Zhang H, Qing S, Zhai Y, et al. Powder Technology, 2021, 377, 748.
94 Chakraborty S, Panigrahi P K. Applied Thermal Engineering, 2020, 174, 115259.
95 Ali N, Teixeira J A, Addali A. Journal of Nanomaterials, 2018, 2018, 1.
96 Menbari A, Alemrajabi A A. Optical Materials, 2016, 52, 116.
97 Fang J, Xuan Y M. RSC Advances, 2017, 7(88), 56023.
98 Gupta N, Gupta S M, Sharma S K. Microfluidics and Nanofluidics, 2021, 25(2), 1.
99 Ma M Y, Zhai Y L, Xuan Z H, et al. Advances in Chemical Engineering, 2021, 40(8), 4179.
马明琰, 翟玉玲, 轩梓灏, 等. 化工进展, 2021, 40(8), 4179.
100 Li Z, Li B R, Cui L, et al. Energy Storage Science and Technology, 2020, 9(6), 1775 (in Chinese).
李昭, 李宝让, 崔柳, 等. 储能科学与技术, 2020, 9(6), 1775.
101 Parsian A, Akbari M. Journal of Thermal Analysis and Calorimetry, 2018, 131(2), 1605.
102 Wu H J, Zhang S W, Zhang Y J. Cryogenics and Superconductivity, 2021, 49(11), 66(in Chinese).
吴华杰, 张善文, 张燕军. 低温与超导, 2021, 49(11), 66.
103 Hou X, Liu H, Li X, et al. Journal of Nanoparticle Research, 2021, 23(4), 86.
104 Liu J, Hu H S, Yang S W, et al. Journal of Anhui Electrical Engineering Vocational and Technical College, 2021, 26(3), 58(in Chinese).
刘吉, 胡槐生, 杨双维, 等. 安徽电气工程职业技术学院学报, 2021, 26(3), 58.
105 Yuan F Y. Effects of nanoparticles addition on heat transfer characteristics of molten salt. Ph. D. Thesis, Zhejiang University, China, 2017 (in Chinese).
袁方洋. 纳米颗粒两相流中颗粒动力学演变及对流传热和阻力特牲的研究. 博士学位论文, 浙江大学, 2017.
106 Wang K. Numerical simulation study of heat transfer enhancement of nanofluids under the action of magnetic fields. Master's Thesis, Nort-heastern Electric Power University, 2021(in Chinese).
王凯. 在磁场作用下纳米流体强化传热的数值模拟研究. 硕士学位论文, 东北电力大学, 2021.
107 Karimi Y, Solaimany N A R, Motevasel M. Journal of Thermal Analysis and Calorimetry, 2021, 143(1), 671.
108 Xu S L, Sun R, Cai Y Q, et al. Granular Matter, 2017, 20(1), 4.
109 Mohammed H I, Giddings D, Walker G S, et al. Applied Thermal Engineering, 2018, 128, 264.
110 Kannadhasan V, Senthil K A, Vairamuthu J, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147(5), 3831.
111 Pálovics P, Németh M, Rencz M. Energies, 2020, 13(18), 4871.
112 Cao C S. Fully-resolved lattice Boltzmann simulation of the particle suspension flow. Master's Thesis, Huazhong University of Science and Technology, 2016(in Chinese).
曹传胜. 悬浮颗粒运动的格子Boltzmann全解析模拟. 硕士学位论文, 华中科技大学, 2016.
113 Siddheshwar P G, Kanchana C, Kakimoto Y, et al. Journal of Heat Transfer, 2017, 139(1), 012402.
114 Wang S X, Lin Z N, Gui Z, et al. Energy Engineering, 2019(6), 79(in Chinese).
王思娴, 林子楠, 桂兆, 等. 能源工程, 2019(6), 79.
115 Qi C, Li C, Li K, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147(3), 2417.
116 Tahmooressi H, Kasaeian A, Tarokh A, et al. International Communications in Heat and Mass Transfer, 2020, 110, 104408.
117 Chakraborty S, PanigrahI P K. Applied Thermal Engineering, 2020, 174, 115259.
118 Cheng Y T, Wang S Y, Shao B L, et al. Journal of Process Engineering, 2022, 23(2), 188. (in Chinese).
程赟涛, 王淑彦, 邵宝力, 等. 过程工程学报, 2022, 23(2), 188.
119 Xuan Y, Yao Z. Heat and Mass Transfer, 2004, 41, 199.
120 Cha L. Lattice Boltzmann simulation of three-dimensional particle group settlement. Master's Thesis, Huazhong University of Science and Technology, 2017 (in Chinese).
查露. 三维颗粒(群)沉降的格子Boltzmann全解析数值模拟. 硕士学位论文, 华中科技大学, 2017.
121 Jiang W, Ding G, Peng H, et al. Current Applied Physics, 2010, 10(3), 934.
122 Xu Z B. Study on microscopic and rheological properties of nanoparticle suspensions. Master's Thesis, Chongqing University, China, 2021 (in Chinese).
许自宾. 纳米颗粒悬浮液微观及流变特性的研究. 硕士学位论文, 重庆大学, 2021.
123 Loya A, Najib A, Aziz F, et al. Beilstein Journal of Nanotechnology, 2022, 13(1), 620.
124 Zi X T, Ming J L, Xi C, et al. International Journal of Heat and Mass Transfer, 2017, 115, 544.
125 Lee S L, Saidur R, Sabri M F M, et al. Numerical Heat Transfer, Part A: Applications, 2015, 68(4), 432.
126 Yoshitaka U, Kenta U, Masahiko S. International Journal of Heat and Mass Transfer, 2018, 127, 138.
127 Wang B B, Wang G X, Gao Y, et al. Journal of Northeast Dianli University, 2022, 42(3), 83.
王兵兵, 王高翔, 高轶, 等. 东北电力大学学报, 2022, 42(3), 83.
128 Liao J B, Qing S, Zhang X H, et al. Journal of Molecular Liquids, 2022, 368, 120716.
129 Wang J, Li Z, Jia Y, et al. Journal of Nanoparticle Research, 2021, 23(1), 1.
130 Azimi S S, Kalbasi M. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(4), 263.
131 Liao J, Qing S, Zhang X, et al. Journal of Molecular Liquids, 2022, 368, 120716.
132 Li Z, Cui L, Li B, et al. Physical Chemistry Chemical Physics, 2021, 23(23), 13181.
133 Yang L, Dai J, Dong M, et al. In: 2016 International Conference on Condition Monitoring and Diagnosis (CMD). Xi'an 2016, pp.376.
[1] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[2] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[3] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[4] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[5] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[6] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[7] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[8] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[9] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[10] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[11] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[12] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[13] 聂真, 褚万立, 聂伟志, 陈煜. 含碘敷料的研究进展与应用现状[J]. 材料导报, 2023, 37(2): 20090021-7.
[14] 于洪江, 高明慧, 张美画, 常紫汐, 赵锡麟, 杜春保. 碳纳米流体提高原油采收率室内研究进展与展望[J]. 材料导报, 2023, 37(17): 21090189-9.
[15] 聂文, 许长炜, 彭慧天, 张少波. 矿井新型增润促凝喷雾降尘剂的研制与抑尘性能研究[J]. 材料导报, 2023, 37(15): 22030228-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed