Abstract: As a new type of enhanced heat transfer medium, nanofluid has higher thermal conductivity and single-phase convective heat transfer coefficient than traditional fluid, which can realize more efficient energy utilization. However, at room temperature, the accumulation and sedimentation of nanofluid occur with the increase of standing time. The motion mechanism of nanoparticles in the nanofluid at medium temperature is more complex, which makes it more difficult to maintain long-term dispersion stability. The instability of nanofluid will lead to the deterioration of its performance, which makes it difficult to realize large-scale engineering applications. Therefore, it is of great practical significance to study the stability of nanofluid. In this paper, the factors leading to the instability of nanofluid were summarized, the methods to enhance the stability of nanofluid were concluded, and the shortcomings of the research on the thermal stability of nanofluid at medium temperature were pointed out. In addition, the effects of Brownian motion, thermophoresis and photophoresis of nanoparticles in nanofluid on the stability were analyzed from the perspective of microscopic mechanism, and the advantages and disadvantages of computational fluid dynamics, lattice Boltzmann method and molecular dynamics methods for the simulation of the aggregation and sedimentation process of nanofluid were compared. Finally, the application prospect and potential difficulties of nanofluid in the field of medium temperature were forecasted.
姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
JIANG Qin, DIAO Kelong, YANG Moucun, ZHU Yuezhao. Advances in the Research of Medium Temperature Thermal Stability of Nanofluids. Materials Reports, 2023, 37(S1): 23040330-10.
1 Liu C Q, Wang D B, He Y, et al. Chinese Science Bulletin, 2019, 64(Z2), 3041 (in Chinese). 刘长青, 王德兵, 何燕, 等. 科学通报, 2019, 64(Z2), 3041. 2 Sainz-mañas M, Bataille F, Caliot C, et al. Energy, 2022, 260, 124916. 3 Diao K L, Yang M C, Zhao D, et al. Powder Technology, 2023, 418, 118310. 4 Lenin R, Joy P A, Bera C. Journal of Molecular Liquids, 2021, 338, 116929. 5 Gupta M, Singh V, Kumar R, et al. Renewable and Sustainable Energy Reviews, 2017, 74, 638. 6 Fan W, Zhong F. Thermochimica Acta, 2022, 712, 179229. 7 Younes H, Mao M, Sohel S M, et al. Applied Thermal Engineering, 2022, 207, 118202. 8 Pryazhnikov M I, Minakov A V, Rudyak V Y, et al. International Journal of Heat and Mass Transfer, 2017, 104, 1275. 9 Hemmat E M, Kiannejad Amiri M, Alirezaie A. Journal of Thermal Analysis and Calorimetry, 2018, 134(2), 1113. 10 Zuo X H, Song L J, Guan C F, et al. Materials Reports, DOI:11896/cldb.22050317(in Chinese). 左夏华, 宋立健, 关昌峰, 等. 材料导报, DOI:11896/cldb.22050317. 11 Zhou L, Ma H H, Ma S X, et al. Materials Reports, 2018, 32(15), 2576(in Chinese). 周璐, 马红和, 马素霞, 等. 材料导报, 2018, 32(15), 2576. 12 Yang D L, Ji X, Chen Y, et al. Materials Reports, 2020, 34(21), 21115(in Chinese). 杨德龙, 季旭, 陈颖, 等. 材料导报, 2020, 34(21), 21115. 13 Judran H K, Al-hasnawi A G T, AL Zubaidi F N, et al. Applied Sciences, 2022, 12(5), 2655. 14 Gamal M, Radwan M S, Elgizawy I G, et al. Journal of Molecular Liquids, 2023, 369, 120867. 15 Begum E E, Murshed S M S. Ultrasonics Sonochemistry, 2021, 72, 105424. 16 Yang B, Shi Y, Ma X, et al. Journal of Molecular Liquids, 2023, 377, 121530. 17 Zhang H, Qing S, Xu J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128492. 18 Kumar Kanti P, Sharma P, Sharma K V, et al. Journal of Energy Che-mistry, 2023, 82(7), 359. 19 Girhe N, Botewad S, Pawar P, et al. Indian Journal of Physics, 2023, 97(4), 1137. 20 Maheshwary P B, Handa C C, Nemade K R. Applied Thermal Engineering, 2017, 119, 79. 21 Adam S A, Ju X, Zhang Z, et al. Applied Thermal Engineering, 2020, 175, 115394. 22 Joseph A, Thomas S. Renewable Energy, 2022, 181, 725. 23 Dong J, Zheng Q, Xiong C, et al. International Journal of Thermal Sciences, 2022, 176, 107533. 24 Mo Z Y, Wu Z Y, Wang X, et al. Materials Reports, 2014, 28(14), 28(in Chinese). 莫子勇, 吴张永, 王娴, 等. 材料导报, 2014, 28(14), 28. 25 Ma L X, Chang Q, Qiu J Y, et al. Materials Reports, 2015, 29(8), 79 (in Chinese). 马连湘, 常强, 邱金友, 等. 材料导报, 2015, 29(8), 79. 26 Yu F, Chen Y, Liang X, et al. Progress in Natural Science: Materials International, 2017, 27(5), 531. 27 Chen W, Zou C, Li X. Solar Energy Materials and Solar Cells, 2019, 200, 109931. 28 Yang M C, Wang S, Zhu Y, et al. Energies, 2020, 13(4), 876. 29 Nikolov A, Lee J, Wasan D. Advances in Colloid and Interface Science, 2023, 313, 102847. 30 Yu F, Chen Y, Liang X, et al. Progress in Natural Science: Materials International, 2017, 27(5), 531. 31 Sharaf O Z, Taylor R A, Abu-nada E. Physics Reports, 2020, 867, 1. 32 Sheng L S, Chen Z Q. Journal of Southeast University (Natural Science Edition), 2021, 51(4), 700 (in Chinese). 生丽莎, 陈振乾. 东南大学学报(自然科学版), 2021, 51(4), 700. 33 Chavez P E A, Finotti F, Largiller G, et al. Applied Thermal Engineering, 2022, 211, 118346. 34 Arshad M, Hussain A, Hassan A, et al. Nanomaterials, 2022, 12(7), 1204. 35 Zainal N A, Nazar R, Naganthran K, et al. Nanomaterials, 2022, 12(10), 1771. 36 Chakraborty S. Applied Thermal Engineering, 2020, 174, 115259. 37 Mohd Saidi N, Abdullah N, Norizan M N, et al. Nanomaterials, 2022, 12(21), 3922. 38 Sadri R, Ahmadi G, Togun H, et al. Nanoscale Research Letters, 2014, 9(1), 151. 39 Hendraningrat L, Torsæter O. Transport in Porous Media, 2015, 108(3), 679. 40 Dhinesh Kumar D, Valan Arasu A. Renewable and Sustainable Energy Reviews, 2018, 81, 1669. 41 Mehta B, Subhedar D, Panchal H, et al. Journal of Molecular Liquids, 2022, 364, 120034. 42 Zhang H, Qing S, Zhai Y, et al. Powder Technology, 2021, 377, 748. 43 Sezer N, Atieh M A, Koç M. Powder Technology, 2019, 344, 404. 44 Dos Santos C C, Viali W R, Viali E S N, et al. Journal of Thermal Analysis and Calorimetry, 2021, 146(1), 509. 45 Sharaf O Z, Taylor R A, Abu-Nada E. Physics Reports, 2020, 867, 1. 46 Mesgari S, Taylor R A, Hjerrild N E, et al. Solar Energy Materials and Solar Cells, 2016, 157, 652. 47 Cherpinski A, Gozutok M, SasmazeL H T, et al. Nanomaterials, 2018, 8(7), 469. 48 Wang W, Wu Z, Li B, et al. Journal of Thermal Analysis and Calorimetry, 2019, 136(3), 1037. 49 Xia Y. Research on the flow and heat transfer characteristics of complex fluid and the motion behavior of suspended particles. Master's Thesis, Zhejiang University, China, 2019 (in Chinese). 夏懿. 复杂流体流动与传热及内含颗粒运动特性的研究. 硕士学位论文, 浙江大学, 2019. 50 Akbar T, Batool S, Nawaz R, et al. Advances in Mechanical Engineering, DOI:10. 1177/1687814017740266. 51 Hosseini S H S, Ghadiri M. Applied Mathematical Modelling, 2021, 92, 594. 52 Wang L H, Xiang J, Li J X. Materials Reports, 2011, 25(S1), 17 (in Chinese). 王良虎, 向军, 李菊香. 材料导报, 2011, 25(S1), 17. 53 Reshadi M, Saidi M H. Chemical Engineering Science, 2018, 190, 443. 54 Sarparast H, Alibeigloo A, Kesari S S, et al. Applied Mathematical Modelling, 2022, 108, 92. 55 Azimi S S, Kalbasi M. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(4), 263. 56 Mukherjee S, Mishra P C, Chaudhuri P, et al. Pramana, 2020, 94(1), 150. 57 Cui X, Wang J, Xia G. Nanoscale, 2021, 14(1), 99. 58 Ghosh M M, DAS S. Applied Physics A, 2020, 126(9), 694. 59 Borzuei M, Baniamerian Z. International Journal of Heat and Mass Transfer, 2020, 150, 119299. 60 Hazarika S, Ahmed S. Mathematics and Computers in Simulation, 2022, 192, 452. 61 Lin Y, Jiang Y. International Journal of Heat and Mass Transfer, 2018, 123, 569. 62 Irfan M. Numerical Methods for Partial Differential Equations, 2023, 39(2), 1030. 63 Qian Y, Neale S L, Marsh J H. Scientific Reports, 2020, 10(1), 19169. 64 Fu H, Huang Y, Gao L. Physics Letters A, 2013, 377(39), 2815. 65 Liu Y F. Study of optimal nanofluidis, optical properties of nanoparticles in PV/T systems and photophoretic lift forces on particles. Master's Thesis, Beijing University of Chemical Technology, China, 2020 (in Chinese). 刘亚飞. 基于纳米流体的光伏光热系统实验研究及颗粒光学和力学性能分析. 硕士学位论文, 北京化工大学, 2020. 66 Fu H L. Theoretical study on thermal physics and transport characteristics of nano-fluids. Ph. D. Thesis, Soochow University, China, 2013 (in Chinese). 傅怀梁. 纳米流体热物理及泳输运特性理论研究. 博士学位论文, 苏州大学, 2013. 67 Soong C Y, Li W K, Liu C H, et al. Optics Express, 2010, 18(3), 2168. 68 Li W K, Soong C Y, Tzeng P Y, et al. Microfluidics and Nanofluidics, 2011, 10(1), 199. 69 Chang Y C, Keh H J. Journal of Aerosol Science, 2012, 50, 1. 70 Peddie W. Nature, 1927, 120(3031), 799. 71 Khatun S, Nasrin R. Journal of Naval Architecture and Marine Enginee-ring, 2021, 18(2), 217. 72 Wakif A, Chamkha A, Journal of Thermal Analysis and Calorimetry, 2021, 143(2), 1201. 73 Goudarzi S, Shekaramiz M, Omidvar A, et al. Powder Technology, 2020, 375, 493. 74 Zhou Y, Zhu C, Bian K, et al. Electrophoresis, 2021, 42(21-22), 2391. 75 Lee J H, Hwang K S, Jang S P, et al. International Journal of Heat and Mass Transfer, 2008, 51(11-12), 2651. 76 Mahbubul I M, Elcioglu E B, Saidur R, et al. Ultrasonics Sonochemistry, 2017, 37, 360. 77 Ismail H, Sulaiman M Z, Aizzat M A H. IOP Conference Series: Materials Science and Engineering, 2020, 788(1), 012091. 78 Afzal A, Khan S A, Ahamed S C. Materials Research Express, 2019, 6(11), 1150d8. 79 Asadi A, Asadi M, Siahmargoi M, et al. International Journal of Heat and Mass Transfer, 2017, 108, 191. 80 Shah J, Ranjan M, Gupta S K, et al. In: 9th National Conference on Thermophysical Properties (NCTP-2017). Tamil Nadu, India, 2018, pp.020008. 81 Wang S, Yang M C, Zhu Y Z. Chinese Journal of Ceramics, 2020, 39(2), 631(in Chinese). 王洒, 杨谋存, 朱跃钊. 硅酸盐通报, 2020, 39(2), 631. 82 Jia D, Cai S H, Li X Q, et al. Materials Reports, 2021, 35(S2), 540(in Chinese). 贾东, 蔡淑红, 李献强, 等. 材料导报, 2021, 35(S2), 540. 83 Kumar R S, Chaturvedi K R, Iglauer S, et al. Journal of Petroleum Science and Engineering, 2020, 195, 107634. 84 Shanbedi M, Zeinali H S, Maskooki A. Journal of Thermal Analysis and Calorimetry, 2015, 120(2), 1193. 85 Hordy N, Rabilloud D, Meunier J L, et al. Solar Energy, 2014, 105, 82. 86 Amiri A, Shanbedi M, Amiri H, et al. Applied Thermal Engineering, 2014, 71(1), 450. 87 Shanbedi M, Zeinali H S, Maskooki A. Journal of Thermal Analysis and Calorimetry, 2015, 120(2), 1193. 88 Liu X, Zhao Y, Li Q, et al. Journal of Molecular Liquids, 2016, 219, 1100. 89 Zhang H, Qing S, Xu J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128492. 90 Amiri A, Shanbedi M, Amiri H, et al. Applied Thermal Engineering, 2014, 71(1), 450. 91 Hordy N, Meunier J L, Coulombe S. Plasma Processes and Polymers, 2015, 12(6), 533. 92 Khurana D, Subudhi S. Journal of Thermal Science and Engineering Applications, 2021, 13(5), 051014. 93 Zhang H, Qing S, Zhai Y, et al. Powder Technology, 2021, 377, 748. 94 Chakraborty S, Panigrahi P K. Applied Thermal Engineering, 2020, 174, 115259. 95 Ali N, Teixeira J A, Addali A. Journal of Nanomaterials, 2018, 2018, 1. 96 Menbari A, Alemrajabi A A. Optical Materials, 2016, 52, 116. 97 Fang J, Xuan Y M. RSC Advances, 2017, 7(88), 56023. 98 Gupta N, Gupta S M, Sharma S K. Microfluidics and Nanofluidics, 2021, 25(2), 1. 99 Ma M Y, Zhai Y L, Xuan Z H, et al. Advances in Chemical Engineering, 2021, 40(8), 4179. 马明琰, 翟玉玲, 轩梓灏, 等. 化工进展, 2021, 40(8), 4179. 100 Li Z, Li B R, Cui L, et al. Energy Storage Science and Technology, 2020, 9(6), 1775 (in Chinese). 李昭, 李宝让, 崔柳, 等. 储能科学与技术, 2020, 9(6), 1775. 101 Parsian A, Akbari M. Journal of Thermal Analysis and Calorimetry, 2018, 131(2), 1605. 102 Wu H J, Zhang S W, Zhang Y J. Cryogenics and Superconductivity, 2021, 49(11), 66(in Chinese). 吴华杰, 张善文, 张燕军. 低温与超导, 2021, 49(11), 66. 103 Hou X, Liu H, Li X, et al. Journal of Nanoparticle Research, 2021, 23(4), 86. 104 Liu J, Hu H S, Yang S W, et al. Journal of Anhui Electrical Engineering Vocational and Technical College, 2021, 26(3), 58(in Chinese). 刘吉, 胡槐生, 杨双维, 等. 安徽电气工程职业技术学院学报, 2021, 26(3), 58. 105 Yuan F Y. Effects of nanoparticles addition on heat transfer characteristics of molten salt. Ph. D. Thesis, Zhejiang University, China, 2017 (in Chinese). 袁方洋. 纳米颗粒两相流中颗粒动力学演变及对流传热和阻力特牲的研究. 博士学位论文, 浙江大学, 2017. 106 Wang K. Numerical simulation study of heat transfer enhancement of nanofluids under the action of magnetic fields. Master's Thesis, Nort-heastern Electric Power University, 2021(in Chinese). 王凯. 在磁场作用下纳米流体强化传热的数值模拟研究. 硕士学位论文, 东北电力大学, 2021. 107 Karimi Y, Solaimany N A R, Motevasel M. Journal of Thermal Analysis and Calorimetry, 2021, 143(1), 671. 108 Xu S L, Sun R, Cai Y Q, et al. Granular Matter, 2017, 20(1), 4. 109 Mohammed H I, Giddings D, Walker G S, et al. Applied Thermal Engineering, 2018, 128, 264. 110 Kannadhasan V, Senthil K A, Vairamuthu J, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147(5), 3831. 111 Pálovics P, Németh M, Rencz M. Energies, 2020, 13(18), 4871. 112 Cao C S. Fully-resolved lattice Boltzmann simulation of the particle suspension flow. Master's Thesis, Huazhong University of Science and Technology, 2016(in Chinese). 曹传胜. 悬浮颗粒运动的格子Boltzmann全解析模拟. 硕士学位论文, 华中科技大学, 2016. 113 Siddheshwar P G, Kanchana C, Kakimoto Y, et al. Journal of Heat Transfer, 2017, 139(1), 012402. 114 Wang S X, Lin Z N, Gui Z, et al. Energy Engineering, 2019(6), 79(in Chinese). 王思娴, 林子楠, 桂兆, 等. 能源工程, 2019(6), 79. 115 Qi C, Li C, Li K, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147(3), 2417. 116 Tahmooressi H, Kasaeian A, Tarokh A, et al. International Communications in Heat and Mass Transfer, 2020, 110, 104408. 117 Chakraborty S, PanigrahI P K. Applied Thermal Engineering, 2020, 174, 115259. 118 Cheng Y T, Wang S Y, Shao B L, et al. Journal of Process Engineering, 2022, 23(2), 188. (in Chinese). 程赟涛, 王淑彦, 邵宝力, 等. 过程工程学报, 2022, 23(2), 188. 119 Xuan Y, Yao Z. Heat and Mass Transfer, 2004, 41, 199. 120 Cha L. Lattice Boltzmann simulation of three-dimensional particle group settlement. Master's Thesis, Huazhong University of Science and Technology, 2017 (in Chinese). 查露. 三维颗粒(群)沉降的格子Boltzmann全解析数值模拟. 硕士学位论文, 华中科技大学, 2017. 121 Jiang W, Ding G, Peng H, et al. Current Applied Physics, 2010, 10(3), 934. 122 Xu Z B. Study on microscopic and rheological properties of nanoparticle suspensions. Master's Thesis, Chongqing University, China, 2021 (in Chinese). 许自宾. 纳米颗粒悬浮液微观及流变特性的研究. 硕士学位论文, 重庆大学, 2021. 123 Loya A, Najib A, Aziz F, et al. Beilstein Journal of Nanotechnology, 2022, 13(1), 620. 124 Zi X T, Ming J L, Xi C, et al. International Journal of Heat and Mass Transfer, 2017, 115, 544. 125 Lee S L, Saidur R, Sabri M F M, et al. Numerical Heat Transfer, Part A: Applications, 2015, 68(4), 432. 126 Yoshitaka U, Kenta U, Masahiko S. International Journal of Heat and Mass Transfer, 2018, 127, 138. 127 Wang B B, Wang G X, Gao Y, et al. Journal of Northeast Dianli University, 2022, 42(3), 83. 王兵兵, 王高翔, 高轶, 等. 东北电力大学学报, 2022, 42(3), 83. 128 Liao J B, Qing S, Zhang X H, et al. Journal of Molecular Liquids, 2022, 368, 120716. 129 Wang J, Li Z, Jia Y, et al. Journal of Nanoparticle Research, 2021, 23(1), 1. 130 Azimi S S, Kalbasi M. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(4), 263. 131 Liao J, Qing S, Zhang X, et al. Journal of Molecular Liquids, 2022, 368, 120716. 132 Li Z, Cui L, Li B, et al. Physical Chemistry Chemical Physics, 2021, 23(23), 13181. 133 Yang L, Dai J, Dong M, et al. In: 2016 International Conference on Condition Monitoring and Diagnosis (CMD). Xi'an 2016, pp.376.