Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 20090021-7    https://doi.org/10.11896/cldb.20090021
  高分子与聚合物基复合材料 |
含碘敷料的研究进展与应用现状
聂真1, 褚万立2, 聂伟志3, 陈煜1,*
1 北京理工大学材料学院,北京 100081
2 解放军总医院第四医学中心烧伤整形科,北京 100048
3 山东省文登整骨医院,山东 文登 264400
Application Status and Research Progress of Iodine Dressing
NIE Zhen1, CHU Wanli2, NIE Weizhi3, CHEN Yu1,*
1 School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Department of Burn and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
3 Shandong Wendeng Osteopathy Hospital,Wendeng 264400,Shandong, China
下载:  全 文 ( PDF ) ( 1392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碘是一种具有高广谱抗菌性和低耐药性的高效抗菌剂,被广泛应用于敷料中,起到止血促愈、保护创面、防止感染等作用。然而,碘的多重抗菌机制在保证抗菌性的同时,也导致了高细胞毒性。通过络合提高碘的稳定性,实现碘的缓慢释放,是降低其细胞毒性的常用方法。随着湿性愈合理论的发展,能够提供微湿润环境的新型敷料逐渐代替传统敷料,成为含碘敷料的主要发展方向。因此,将络合碘负载于不同功能的新型载体中,以制备低毒高效的含碘敷料,成为近年来的研究热点。
目前临床上应用较广泛的碘络合剂包括聚维酮、卡地姆、壳聚糖及其衍生物等,但大多存在络合效果差、有效碘含量低等问题。通过改进络合方式实现碘的高效络合,是目前含碘敷料的重要研究方向。改善碘络合物络合效果的途径包括对传统碘络合剂进行改性、引入共聚物提升络合效果、寻找具有优良性能和独特优势的新型络合剂等。例如:将聚维酮与醋酸乙烯酯共聚,可实现碘的再捕获;将常用于口服的卵磷脂-碘经过改性后负载于敷料,可提高碘的分散性和均匀性。另一方面,大多数络合碘易溶于水,这一特性使其能够分散于多种敷料中,具有较大的发展潜力。含碘泡沫敷料、含碘水凝胶敷料、含碘膜、含碘微球、纳米纤维含碘敷料等新型含碘敷料具有更广阔的应用前景。通过将碘与功能性载体实现优势整合,可实现含碘敷料应用场景多元化,拓宽其应用领域。
本文详细介绍了常用于敷料中的碘络合物的种类、结构及特点,并分析了不同络合物的优势与局限性;综述了含碘敷料的种类、研究进展和临床应用,并对今后的研究方向做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂真
褚万立
聂伟志
陈煜
关键词:  含碘敷料  碘络合物  稳定性  临床    
Abstract: Iodine is a highly effective antibacterial agent with high broad-spectrum antibacterial properties and low drug resistance. It is widely used in dressings to stop bleeding, promote healing, protect wound surface and prevent infection. However, the multiple antibacterial mechanisms of iodine, while guaranteeing antibacterial properties, also lead to high cytotoxicity. Improving the stability of iodine through complexation and achieving slow release of iodine is a common method to reduce its cytotoxicity. With the widely development of wet healing theory, using of new dressings that can provide a micro-moist environment has gradually replaced using of traditional dressings and become the main development direction of iodine-containing dressings. Hence, it has become a research hotspot in recent years to load complexed iodine into new carriers with different functions to prepare low-toxicity and high-efficiency iodine-containing dressings.
Currently, the iodine complexing agents are widely used in clinic include povidone, katim, chitosan and its derivatives, but most of them have problems of poor complexing effect and low effective iodine content. It is an important research direction to achieve efficient complexation of iodine by improving the complexing method for iodine-containing dressings at present. The ways to improve the effect of iodine complexes include modifying the traditional iodine complex agent, introducing copolymer to improve the effect of iodine complex, and looking for new complexing agents with excellent properties and unique advantages. For example, iodine recapture can be achieved by copolymerization of povidone with vinyl acetate. Modified lecithin-iodine is usually used for oral administration, the application of which to the dressing can improve the dispersion and uniformity of iodine. On the other hand, most complexed iodine is easily soluble in water, which enables it to be dispersed in a variety of dressings and shows great potential for development. New iodine-containing dressings (such as iodine-containing foam dressings, iodine-containing hydrogel dressings, iodine-containing films, iodine-containing microspheres, and nano-fiber iodine-containing dressings) have a broader application prospect. By integrating the advantages of iodine with carriers of specific functions, the application scenarios of iodine-containing dressings can be diversified and their application fields can be broadened.
In this paper,we introduce the types, structures and characteristics of iodine complexes commonly used in dressings in detail, analyze the advantages and limitations of different complexes, review the types, research progress and clinical applications of iodine-containing dressings, and propose the future research focus.
Key words:  iodine dressing    iodo-complex    stability    clinical
发布日期:  2023-02-08
ZTFLH:  O63  
基金资助: 解放军总医院军事医学青年专项(QNC19039)
通讯作者:  *陈煜,博士,北京理工大学材料学院教授、博士研究生导师。2001年北京理工大学高分子材料与工程专业本科毕业,2006年北京理工大学材料科学与工程专业博士毕业后留校任教至今。目前主要从事天然高分子材料改性及在医用、环境保护材料领域的应用研究。在Chem. Eng. J.、Polym. Rev.、J. Hazard. Mater.、Compos. Part B-Eng.等期刊发表论文80余篇。   
作者简介:  聂真,2021年6月北京理工大学高分子材料与工程专业本科毕业,现为北京理工大学材料学院研究生。目前主要从事基于天然高分子的医用材料的研究。
引用本文:    
聂真, 褚万立, 聂伟志, 陈煜. 含碘敷料的研究进展与应用现状[J]. 材料导报, 2023, 37(2): 20090021-7.
NIE Zhen, CHU Wanli, NIE Weizhi, CHEN Yu. Application Status and Research Progress of Iodine Dressing. Materials Reports, 2023, 37(2): 20090021-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090021  或          http://www.mater-rep.com/CN/Y2023/V37/I2/20090021
1 National Bureau of Statistics. Health statistics yearbook 2019, China Statistics Press, China, 2019 (in Chinese).
中华人民共和国统计局. 2019年卫生健康统计年鉴, 中国统计出版社, 2019.
2 Guo H W, Gao J, Zhao X Z, et al. Journal of Materials Science and Engineering, 2019, 37(5), 840 (in Chinese).
郭慧文, 高晶, 赵新哲, 等. 材料科学与工程学报, 2019, 37(5), 840.
3 Shahin H, Aldo R B. Acta Biomaterialia, 2020, 107, 25.
4 Swanson T, Keast D. Wounds International, 2017, 8(2), 19.
5 Lin L, Chen J M, Wang H, et al. Materials Reports A:Review Papers, 2019, 33(1), 65 (in Chinese).
林琳, 陈景民, 王会, 等. 材料导报:综述篇, 2019, 33(1), 65.
6 Simoes D, Miguel S P, Ribeiro M P, et al. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 130.
7 Huang H B, Yao J, Zeng G S, et al. Packaging Journal, 2019, 11(4), 10 (in Chinese).
黄海波, 姚进, 曾广胜, 等. 包装学报, 2019, 11(4), 10.
8 Knutson R A, Merbitz L A, Creekmore M A, et al. Southern Medical Journal. 1981, 74(11), 1329.
9 Wu X C. Journal of Nursing Science, 2007(3), 45(in Chinese).
吴湘翠. 护理学杂志, 2007(3), 45.
10 Laudanska H, Gustavson B. The Journal of International Medical Research, 1988, 16(6), 428.
11 Malone M, Schwarzer S, Radzieta M, et al. International Wound Journal, 2019, 16(6), 1477.
12 Sinha R, Agarwal R K, Agarwal M. Burns, 1997, 23(7), 626.
13 Li F, Li J Y. World Latest Medicine Information, 2019, 19(89), 357 (in Chinese).
历凤, 历建英. 世界最新医学信息文摘, 2019, 19(89), 357.
14 Chang S L. Journal of Environment Engineering, 1971, 97, 689.
15 Schreier H, Erdos G, Reimer K, et al. Dermatology (Basel, Switzerland), 1997, 195, 2.
16 Pesce L, Kopp P. International Journal of Pediatric Endocrinology, 2014, 2014(1), 8.
17 Findik R B, Yilmaz G, Celik H T, et al. The Journal of Maternal-Fetal & Neonatal Medicine, 2014, 27(10), 1020.
18 Lividas D P, Piperingos G D, Sfontouris J, et al. The Journal of International Medical Research, 1978, 6(5), 406.
19 Yilmaz D, Tahsin T H, Zorlu P, et al. The Indian Journal of Pediatrics, 2003, 70 (8), 675.
20 Chang S P, Dae H P, Tae S O, et al. International Wound Journal, 2019, 16(2), 379.
21 Arai K, Yamazaki M, Maeda T, et al. International Wound Journal, 2013, 10(5), 542.
22 Patil N, Rao K N, Avinash A, et al. Online Journal of Health and Allied Sciences, 2016, 14(4), 19.
23 Hugo W B. The Journal of Applied Bacteriology, 1991, 71(1), 9.
24 Raymond P, Garman J. Journal of Chemical Education, 1969, 46(5), A356.
25 Bogash R C. American Journal of Health-System Pharmacy, 1955, 12(2), 135.
26 Kang J N. Anthology of Medicine, 1995(5), 436 (in Chinese).
亢江宁. 医学文选, 1995(5), 436.
27 Campbell N, Campbell D. Journal of Wound Care, 2013, 22(8), 401.
28 Ju X J. Journal of Pharmaceutical Practice, 1988(3), 58(in Chinese).
居喜娟. 药学情报通讯, 1988(3), 58.
29 Zhang Z K, Fan H Q. Anhui Chemical Industry, 1992(2), 13 (in Chinese).
张正凯, 范和桥. 安徽化工, 1992(2), 13.
30 Guo R J, Wang X D. Chinese Journal of Disinfection, 2009, 26(4), 368 (in Chinese).
郭睿劼, 王晓东. 中国消毒学杂志, 2009, 26(4), 368.
31 Rodeheaver G, Turnbull V, Edgerton M T, et al. American Journal of Surgery, 1976, 132(1), 67.
32 Prigot A, Roc S. The American Journal of Surgery, 1962, 103(5), 589.
33 Skog E, Arnesjö B, Troëng T, et al. The British Journal of Dermatology, 1983, 109(1), 77.
34 Akiyama H, Oono T, Saito M, et al. Journal of Dermatology. 2004, 31(7), 529.
35 Nahm W J, Mota J A, Rojas S, et al. The American Journal of Case Reports, 2018, 19, 844.
36 Raju R, Kethavath S N, Sangavarapu S M, et al. Wounds: a Compen-dium of Clinical Research and Practice, 2019, 31(3), 85.
37 Williams R L. Wounds: a Compendium of Clinical Research and Practice, 2009, 21(1), 15.
38 Phillips P L, Yang Q P, Davis S, et al. International Wound Journal, 2015, 12(4), 469.
39 Daniel J F, Paul J R, Emma C F, et al. Wound Repair and Regeneration, 2017, 25(1), 13.
40 Hisanori A, Takashi O, Masakazu S, et al. The Journal of Dermatology, 2004, 31(7), 529.
41 Kiamco M M, Atci E, Mohamed A, et al. Applied and Environmental Microbiology, 2017, 83(6), e02783-16.
42 Lin B, Liu X L. Chinese Journal of Optometry & Ophthalmology and Visual Science, 2002(2), 118 (in Chinese).
林冰, 刘晓玲. 眼视光学杂志, 2002(2), 118.
43 Singalavanija A, Ruangvaravate N, Dulayajinda D. Retina (Philadelphia, Pa. ), 2000, 20(4), 378.
44 Shichijo K, Kobayashi S, Kondo T, et al. Chiryō Therapy, 1964, 46, 94.
45 Chen Y, Qiu H Y, Dong M H, et al. Carbohydrate Polymers, 2019, 206, 435.
46 Schenck H U, Simak P, Haedicke E. Chemischer Informationsdienst, 1980, 16, 1.
47 Han J W. Chemical Engineering Joural, 2002, 90(3), 49.
48 Gershenfeld L. American Journal of Surgery, 1957, 94(6), 938.
49 Gilmore O J, Reid C, Strokon A. Postgraduate Medical Journal, 1977, 53(617), 122.
50 Gruber R P, Vistnes L, Pardoe R. Plastic and Reconstructive Surgery, 1975, 55(4), 472.
51 Houang E T, Gilmore O J, Reid C, et al. Journal of Clinical Pathology, 1976, 29(8), 752.
52 Gilmore O J. Annals of the Royal College of Surgeons of England, 1977, 59(2), 93.
53 Borjihan Q, Zhang Z, Zi X Y, et al. Journal of Hazardous Materials, 2020, 384, 121305.
54 Naeema M, Yahya C E, Pradeep K, et al. Journal of Pharmaceutical Sciences, 2014, 103(8), 2211.
55 Chen Y, Dou G F, Luo Y J, et al. Polymer Bulletin, 2005(1), 94 (in Chinese).
陈煜, 窦桂芳, 罗运军, 等. 高分子通报, 2005(1), 94.
56 Chen Z J, Chen Y F, Zheng J, et al. Materials Reports, 2018, 32(S1), 169 (in Chinese).
陈智捷, 陈燕芳, 郑军, 等. 材料导报, 2018, 32(S1), 169.
57 Hears A, Rodriguez N M, Ramos V M, et al. Carbohydrate Polymers, 2001, 44(1), 1.
58 Tang Y, Xie L L, Sai M Z, et al. Materials Science & Engineering C, 2015, 48, 1.
59 Guo R, Sai M Z, Zhang M, et al. Applied Chemistry, 2015, 32(5), 498 (in Chinese).
郭瑞, 赛明泽, 张敏, 等. 应用化学, 2015, 32(5), 498.
60 Alok M, Jagdeep N. Plastic and Reconstructive Surgery, 2003, 111(6), 2105.
61 Liu W. Open Medicine, 2015, 10(1), 452.
62 Cheng L, Gao Y, Zhou J, et al. China Medical Devices, 2011, 26(5), 99 (in Chinese).
程玲, 高勇, 周静, 等. 中国医疗设备, 2011, 26(5), 99.
63 Luo J. Journal of Bioactive and Compatible Polymers, 2010, 25(2), 185.
64 Leveen H H, Jeanette R, Leveen E G, et al. U. S. patent application, USP4381380, 1983.
65 Landsman T L, Touchet T, Hasan S M, et al. Acta Biomaterialia, 2017, 47, 91.
66 Kennedy J F, Methacanon P, Lloyd L L, et al. Carbohydrate Polymers, 1997, 34(4), 315.
67 Lanel B, Barthès-Biesel D, Regnier C, et al. Biorheology, 1997, 34(2), 139.
68 Kannon G A, Garrett A B. Dermatologic Surgery, Official Publication for American Society for Dermatologic Surgery, 1995, 21(7), 175.
69 Wood L, Wood Z, Davis P, et al. Journal of Wound Care, 2010, 19(7), 298.
70 Zhao P L. Structural design and application of long-acting drug release hydrogel. Master's Thesis, Qilu University of Technology, China, 2018 (in Chinese).
赵培丽. 长效药物释放水凝胶结构设计及应用. 硕士学位论文, 齐鲁工业大学, 2018.
71 Pensak J, Juthamart B, Juthamart S, et al. Materials (Basel, Switzerland), 2019, 12(10), 12101628.
72 Du L N, Su C, Shi Y K, et al. Pharmaceutical Journal of Chinese People's Liberation Army, 2010, 26(6), 471 (in Chinese).
杜丽娜, 苏畅, 施沅坤, 等. 解放军药学学报, 2010, 26(6), 471.
73 Summa M, Russo D, Penna I, et al. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 17.
74 Chen Y, Yang Y M, Liao Q P, et al. Materials Science & Engineering C, 2016, 67, 247.
75 Raut P W, Khandwekar A P, Sharma N. Journal of Materials Science, 2018, 53, 1117 .
76 Zhang S L, Kai C C, et al. Applied Surface Science, 2020, 500, 144046.
77 Patil B S, Mastiholimath V S, Kulkarni A R, et al. Oriental Pharmacy and Experimental Medicine, 2011, 11 (2), 123.
78 Nguyen T L U, Farrugia B, Davis T P, et al. Journal of Polymer Science Part A, Polymer Chemistry, 2007, 45, 3256.
79 Wang Q, Jin X Q, Sun J H, et al. International Journal of Polymeric Materials, 2018, 67, 896.
80 Katrin F, Rafael D, Alban D, et al. Journal of Controlled Release, 2017, 262, 127.
81 Athanassiou A, Bayer I S, Liakos I, et al. Italy patent application, TO2012A000258, 2012.
82 Liakos I, Rizzello L, Ilker S B, et al. Carbohydrate Polymers, 2013, 92(1), 176.
83 Osmokrovic A, Jancic I, Vunduk J, et al. Carbohydrate Polymers, 2018, 196, 279.
84 Shadamarshan R P, Balaji H, Rao H S, et al. Colloids and Surfaces B:Biointerfaces, 2018, 171, 698.
85 Wang B L, Ahmad Z S, Huang J, et al. Chemical Engineering Journal, 2018, 343, 379.
86 Semih C, Reza S, Ipek E, et al. Expert Opinion on Drug Discovery, 2017, 12(4), 391.
87 Ulubayram K, Calamak S, Shahbazi R, et al. Current Pharmaceutical Design, 2015, 21(15), 1930.
88 Ignatova M, Markova N, Manolova N, et al. Journal of Biomaterials Science-Polymer Edition, 2008, 19(3), 373.
89 Shitole A A, Raut P, Giram P, et al. Materials Science-Engineering C, 2020, 110, 110731.
[1] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[2] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[3] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[4] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[5] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[6] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[7] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[8] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[9] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[10] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[11] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[12] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[13] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[14] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[15] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed