Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090258-8    https://doi.org/10.11896/cldb.21090258
  无机非金属及其复合材料 |
In、Ta共掺杂Ni-BaCeO3基氢分离膜
杨春利1,2,*, 黄江龙2, 杜晶2, 陈喜2, 张浩2, 王靖2
1 西安建筑科技大学西部绿色建筑国家重点实验室,西安 710055
2 西安建筑科技大学功能材料研究所,西安 710055
In and Ta Co-doped Ni-BaCeO3-based Hydrogen Separation Membranes
YANG Chunli1,2,*, HUANG Jianglong2, DU Jing2, CHEN Xi2, ZHANG Hao2, WANG Jing2
1 State Key Laboratory of Green Building in Western, Xi'an University of Architecture & Technology, Xi'an 710055, China
2 Functional Materials Laboratory,Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 18272KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统能源的短缺以及化石燃料直接燃烧后所产生的污染,促使人类必须探索新的可替代能源。氢气无毒、无污染、来源广泛,是第三次能源革命的重要媒介。工业制氢会产生CO、CO2等副产物,故而提升氢气浓度,剔除这些杂质,是制氢必不可缺的环节。混合导电氢分离膜具有高效的氢分离能力,是应用在该环节的最佳选择之一。BaCeO3是单相钙钛矿结构,在其“B”位掺杂后,质子导电能力提升,具备更佳的氢渗透性,但这类材料在湿润CO2气氛中化学稳定性较差。合理的掺入其他离子以及添加金属相,能有效改善材料的氢渗透率或化学稳定性。本工作使用溶胶凝胶法制备了BaCe0.7In0.1Ta0.1Y0.1O3-δ粉末材料,并与Ni粉混合共烧制备质子-电子混合导电金属陶瓷氢分离膜。通过XRD、SEM表征了样品的相结构和微观形貌,并测试了其电导率,氢渗透率,以及在湿润CO2环境中的短期稳定性。结果表明,In3+和Ta5+共掺杂不仅改善了样品的烧结活性,并且提高了氢分离膜在湿润CO2环境中的化学稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨春利
黄江龙
杜晶
陈喜
张浩
王靖
关键词:  质子-电子混合导电膜  稳定性  电导率  氢渗透率    
Abstract: The shortage of traditional energy and the pollution caused by the direct combustion of fossil fuels make it necessary to explore new alternative energy sources. Hydrogen, which is non-toxic, pollution-free and widely available, is therefore an important vehicle for the third energy revolution. Since CO, CO2 and other impurities will be produced in industrial hydrogen production, it is essential to improve the concentration of hydrogen and remove these impurities. Mixed conducting hydrogen separation membranes are one of the best choices for application in this process because of its high efficiency in hydrogen separation. By doping at the "B" site, the single-phase perovskite structure BaCeO3 has good ionic conductivity and high hydrogen permeability, but this kind of material has poor chemical stability in wet CO2 atmosphere, which can not meet the needs of practical application. In view of these problems, reasonable incorporation of other ions and metal phases can effectively improve hydrogen permeability or chemical stability. In this work, BaCe0.7In0.1Ta0.1Y0.1O3-δ powder was prepared by sol-gel method, and then mixed with Ni powder to prepare proton-electron mixed conducting cermet hydrogen separation membrane. The phase structure and microstructure of the samples were characterized by XRD and SEM, respectively. Furthermore, the electrical conductivity, hydrogen permeability, and short-term stability in wet CO2 environment were also tested. The results showed that The co-doping of In3+ and Ta5+ ions not only improved the sintering activity, but also improved the chemical stability of the hydrogen separation membrane in the wet CO2 environment.
Key words:  proton-electron mixed conducting membrane    stability    electrical conductivity    hydrogen permeability
发布日期:  2023-03-27
ZTFLH:  TQ028  
基金资助: 西部绿色建筑国家重点实验室自主研究课题(LSZZ202020);陕西省自然科学基础研究计划项目(2021JQ-497);陕西省教育厅服务地方专项计划项目(20JC022);西安建筑科技大学自然科学专项项目(ZR20026)
通讯作者:  *杨春利,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。2005年于郑州大学材料科学与工程专业本科毕业,2012年7月取得中国科学技术大学材料学博士学位(硕/博连读),同年加入西安建筑科技大学材料科学与工程学院工作至今。主要从事中空纤维管、混合导电气体分离膜、固体氧化物燃料电池的制备与表征等方面的研究工作。在国内外期刊发表文章30余篇,包括Journal of Power Sources、Materials Letters、Materials Science and Engineering B、Chinese Journal of Chemical Physics、《无机材料学报》等期刊。yangchunli@xauat.edu.cn   
引用本文:    
杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
YANG Chunli, HUANG Jianglong, DU Jing, CHEN Xi, ZHANG Hao, WANG Jing. In and Ta Co-doped Ni-BaCeO3-based Hydrogen Separation Membranes. Materials Reports, 2023, 37(6): 21090258-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090258  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090258
1 Ameyaw B, Li Y, Oppong A, et al. Energy Policy, 2019, 130, 7.
2 Chong C T, Van Fan Y, Lee C T, et al. Energy, 2021, 241, 122801.
3 Anwar S, Khan F, Zhang Y H, et al. International Journal of Hydrogen Energy, 2021, 46(63), 32284.
4 Deng J F, Chen S P, Wu X J, et al. Journal of Inorganic Materials, 2021, 36(1), 1(in chinese).
邓霁峰, 陈顺鹏, 武晓娟, 等. 无机材料学报, 2021, 36(1), 1.
5 Wang M M, Tan X Y, Motuzas J, et al. Journal of Membrane Science, 2021, 620, 118909.
6 Shang Y Y, Wei L Y, Meng X X, et al. Journal of Membrane Science, 2018, 546, 82.
7 Bernardo G, Araújo T, da Silva Lopes T, et al. International Journal of Hydrogen Energy, 2020, 45(12), 7313.
8 Tao Z T, Yan L T, Qiao J L, et al. Progress in Materials Science, 2015, 74, 1.
9 Lu G Q, Diniz da Costa J C, Duke M, et al. Journal of Colloid and Interface Science, 2007, 314(2), 589.
10 Li P Y, Wang Z, Qiao Z H, et al. Journal of Membrane Science, 2015, 495, 130.
11 Phair J W, Badwal S P S. Ionics, 2006, 12(2), 103.
12 Ockwig N W, Nenoff T M. Chemical Reviews, 2010, 110(4), 2573.
13 Zhu Z W, Guo E Y, Wei Z L, et al. Journal of Power Sources, 2018, 373(1), 132.
14 Schönberger F, Kendrick E, Islam M S, et al. Solid State Ionics, 2005, 176 (39), 2951.
15 Zhong Z B, Jiang Y, Lian Z X, et al. Ceramics International, 2020, 46(8, Part B), 12675.
16 Zhang M H, Wang D, Miao L N, et al. Electrochemistry Communications, 2021, 126, 107026.
17 Lesnichyova A S, Belyakov S, Stroeva A Y, et al. Ceramics International, 2021, 47(5), 6105.
18 Yang W J, Zhou H Z, Wang L, et al. International Journal of Hydrogen Energy, 2021, 46(18), 10838.
19 Sun H B, Guo X, Yu F Y, et al. Ceramics International, 2019, 45(6), 7667.
20 Shin E K, Anggia E, Park J S. Solid State Ionics, 2019, 339, 115007.
21 He L, Gao H Y, Xuan Y, et al. Computational Materials Science, 2022, 202, 111007.
22 Žunić M, Savić S M, Branković, G, et al. Ceramics International, 2013, 39(1), 307.
23 Xie K, Yan R, Liu X. Electrochemistry Communications, 2009, 11(8), 1618.
24 Zhang Z Z, Chen L H, Li Q H, et al. Solid State Ionics, 2018, 323, 231.
25 He L, Xuan Y, Zhang F, et al. International Journal of Hydrogen Energy, 2021, 46(1), 1096.
26 Zhao F Y, Liu Q, Wang S W, et al. International Journal of Hydrogen Energy, 2010, 35, 4258.
27 Bi L, Zhang S Q, Fang S M, et al. Electrochemistry Communications, 2008, 10(10), 1598.
28 Sawant P, Varma S, Wani B N, et al. International Journal of Hydrogen Energy, 2012, 37(4), 3848.
29 Yang X F, Jia L C, Pan B C, et al. The Journal of Physical Chemistry C, 2020, 124, 8024.
30 Meng X X, Song J, Yang N T, et al. Journal of Membrane Science, 2012, 401-402, 300.
31 Wang B, Bi L, Zhao X S, et al. Journal of Power Sources, 2018, 399, 207.
32 Siriwardane R V, Poston J A, Fisher E P, et al. Applied Surface Science, 2000, 167(1), 34.
33 Ma X Y, Yang C L, Chen H, et al. Separation and Purification Technology, 2020, 236, 116276.
34 Lv Q, Yang C L, Ma X Y, et al. Journal of Functional Materials, 2018(4), 4161(in chinese).
吕强, 杨春利, 马欣宇, 等. 功能材料, 2018(4), 4161.
35 Yang C L, Ma X Y, Chen H, et al. Journal of Alloys and Compounds, 2018, 762, 409.
36 Yan L T, Sun W P, Bi L, et al. International Journal of Hydrogen Energy, 2010, 35(10), 4508.
37 Giannici F, Longo A, Deganello F, et al. Solid State Ionics, 2007, 178(7), 587.
38 Lei L B, Zhang J H, Yuan Z H, et al. Advanced Functional Materials, 2019, 29(37), 1903805.
39 Scherban T, Nowick A S. Solid State Ionics, 1989, 35(1), 189.
40 Wang J D, Xie Y H, Zhang Z F, et al. Materials Research Bulletin, 2005, 40(8), 1294.
41 Nowick A S, Du Y, Liang K C J S S I. Solid State Ionics, 1999, 125(1), 303.
42 Kreuer K D, Dippel T, Baikov Y M, et al. Solid State Ionics, 1996, 86, 613.
43 Frade J R. Solid State Ionics, 1995, 78(1-2), 87.
44 Bi L, Fabbri E, Sun Z Q, et al. Solid State Ionics, 2011, 196(1), 59.
45 Zunic M, Radojkovic A, Savic S M. Ceramics International, 2013, 39(3), 2631.
46 Bi L, Fang S M, Tao Z T, et al. Journal of the European Ceramic Society, 2009, 29(12), 2567.
47 Zuo C, Dorris S E, Balachandran U, et al. Chemistry of Materials, 2006, 18(19), 4647.
48 Niwa E, Kondo K, Aoki M, et al. Materials Research Bulletin, 2019, 109, 213.
[1] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[2] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[3] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[4] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[5] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[6] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[7] 聂真, 褚万立, 聂伟志, 陈煜. 含碘敷料的研究进展与应用现状[J]. 材料导报, 2023, 37(2): 20090021-7.
[8] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[9] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[10] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[11] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[12] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[13] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[14] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[15] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed