In and Ta Co-doped Ni-BaCeO3-based Hydrogen Separation Membranes
YANG Chunli1,2,*, HUANG Jianglong2, DU Jing2, CHEN Xi2, ZHANG Hao2, WANG Jing2
1 State Key Laboratory of Green Building in Western, Xi'an University of Architecture & Technology, Xi'an 710055, China 2 Functional Materials Laboratory,Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract: The shortage of traditional energy and the pollution caused by the direct combustion of fossil fuels make it necessary to explore new alternative energy sources. Hydrogen, which is non-toxic, pollution-free and widely available, is therefore an important vehicle for the third energy revolution. Since CO, CO2 and other impurities will be produced in industrial hydrogen production, it is essential to improve the concentration of hydrogen and remove these impurities. Mixed conducting hydrogen separation membranes are one of the best choices for application in this process because of its high efficiency in hydrogen separation. By doping at the "B" site, the single-phase perovskite structure BaCeO3 has good ionic conductivity and high hydrogen permeability, but this kind of material has poor chemical stability in wet CO2 atmosphere, which can not meet the needs of practical application. In view of these problems, reasonable incorporation of other ions and metal phases can effectively improve hydrogen permeability or chemical stability. In this work, BaCe0.7In0.1Ta0.1Y0.1O3-δ powder was prepared by sol-gel method, and then mixed with Ni powder to prepare proton-electron mixed conducting cermet hydrogen separation membrane. The phase structure and microstructure of the samples were characterized by XRD and SEM, respectively. Furthermore, the electrical conductivity, hydrogen permeability, and short-term stability in wet CO2 environment were also tested. The results showed that The co-doping of In3+ and Ta5+ ions not only improved the sintering activity, but also improved the chemical stability of the hydrogen separation membrane in the wet CO2 environment.
通讯作者:
*杨春利,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。2005年于郑州大学材料科学与工程专业本科毕业,2012年7月取得中国科学技术大学材料学博士学位(硕/博连读),同年加入西安建筑科技大学材料科学与工程学院工作至今。主要从事中空纤维管、混合导电气体分离膜、固体氧化物燃料电池的制备与表征等方面的研究工作。在国内外期刊发表文章30余篇,包括Journal of Power Sources、Materials Letters、Materials Science and Engineering B、Chinese Journal of Chemical Physics、《无机材料学报》等期刊。yangchunli@xauat.edu.cn
引用本文:
杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
YANG Chunli, HUANG Jianglong, DU Jing, CHEN Xi, ZHANG Hao, WANG Jing. In and Ta Co-doped Ni-BaCeO3-based Hydrogen Separation Membranes. Materials Reports, 2023, 37(6): 21090258-8.
1 Ameyaw B, Li Y, Oppong A, et al. Energy Policy, 2019, 130, 7. 2 Chong C T, Van Fan Y, Lee C T, et al. Energy, 2021, 241, 122801. 3 Anwar S, Khan F, Zhang Y H, et al. International Journal of Hydrogen Energy, 2021, 46(63), 32284. 4 Deng J F, Chen S P, Wu X J, et al. Journal of Inorganic Materials, 2021, 36(1), 1(in chinese). 邓霁峰, 陈顺鹏, 武晓娟, 等. 无机材料学报, 2021, 36(1), 1. 5 Wang M M, Tan X Y, Motuzas J, et al. Journal of Membrane Science, 2021, 620, 118909. 6 Shang Y Y, Wei L Y, Meng X X, et al. Journal of Membrane Science, 2018, 546, 82. 7 Bernardo G, Araújo T, da Silva Lopes T, et al. International Journal of Hydrogen Energy, 2020, 45(12), 7313. 8 Tao Z T, Yan L T, Qiao J L, et al. Progress in Materials Science, 2015, 74, 1. 9 Lu G Q, Diniz da Costa J C, Duke M, et al. Journal of Colloid and Interface Science, 2007, 314(2), 589. 10 Li P Y, Wang Z, Qiao Z H, et al. Journal of Membrane Science, 2015, 495, 130. 11 Phair J W, Badwal S P S. Ionics, 2006, 12(2), 103. 12 Ockwig N W, Nenoff T M. Chemical Reviews, 2010, 110(4), 2573. 13 Zhu Z W, Guo E Y, Wei Z L, et al. Journal of Power Sources, 2018, 373(1), 132. 14 Schönberger F, Kendrick E, Islam M S, et al. Solid State Ionics, 2005, 176 (39), 2951. 15 Zhong Z B, Jiang Y, Lian Z X, et al. Ceramics International, 2020, 46(8, Part B), 12675. 16 Zhang M H, Wang D, Miao L N, et al. Electrochemistry Communications, 2021, 126, 107026. 17 Lesnichyova A S, Belyakov S, Stroeva A Y, et al. Ceramics International, 2021, 47(5), 6105. 18 Yang W J, Zhou H Z, Wang L, et al. International Journal of Hydrogen Energy, 2021, 46(18), 10838. 19 Sun H B, Guo X, Yu F Y, et al. Ceramics International, 2019, 45(6), 7667. 20 Shin E K, Anggia E, Park J S. Solid State Ionics, 2019, 339, 115007. 21 He L, Gao H Y, Xuan Y, et al. Computational Materials Science, 2022, 202, 111007. 22 unić M, Savić S M, Branković, G, et al. Ceramics International, 2013, 39(1), 307. 23 Xie K, Yan R, Liu X. Electrochemistry Communications, 2009, 11(8), 1618. 24 Zhang Z Z, Chen L H, Li Q H, et al. Solid State Ionics, 2018, 323, 231. 25 He L, Xuan Y, Zhang F, et al. International Journal of Hydrogen Energy, 2021, 46(1), 1096. 26 Zhao F Y, Liu Q, Wang S W, et al. International Journal of Hydrogen Energy, 2010, 35, 4258. 27 Bi L, Zhang S Q, Fang S M, et al. Electrochemistry Communications, 2008, 10(10), 1598. 28 Sawant P, Varma S, Wani B N, et al. International Journal of Hydrogen Energy, 2012, 37(4), 3848. 29 Yang X F, Jia L C, Pan B C, et al. The Journal of Physical Chemistry C, 2020, 124, 8024. 30 Meng X X, Song J, Yang N T, et al. Journal of Membrane Science, 2012, 401-402, 300. 31 Wang B, Bi L, Zhao X S, et al. Journal of Power Sources, 2018, 399, 207. 32 Siriwardane R V, Poston J A, Fisher E P, et al. Applied Surface Science, 2000, 167(1), 34. 33 Ma X Y, Yang C L, Chen H, et al. Separation and Purification Technology, 2020, 236, 116276. 34 Lv Q, Yang C L, Ma X Y, et al. Journal of Functional Materials, 2018(4), 4161(in chinese). 吕强, 杨春利, 马欣宇, 等. 功能材料, 2018(4), 4161. 35 Yang C L, Ma X Y, Chen H, et al. Journal of Alloys and Compounds, 2018, 762, 409. 36 Yan L T, Sun W P, Bi L, et al. International Journal of Hydrogen Energy, 2010, 35(10), 4508. 37 Giannici F, Longo A, Deganello F, et al. Solid State Ionics, 2007, 178(7), 587. 38 Lei L B, Zhang J H, Yuan Z H, et al. Advanced Functional Materials, 2019, 29(37), 1903805. 39 Scherban T, Nowick A S. Solid State Ionics, 1989, 35(1), 189. 40 Wang J D, Xie Y H, Zhang Z F, et al. Materials Research Bulletin, 2005, 40(8), 1294. 41 Nowick A S, Du Y, Liang K C J S S I. Solid State Ionics, 1999, 125(1), 303. 42 Kreuer K D, Dippel T, Baikov Y M, et al. Solid State Ionics, 1996, 86, 613. 43 Frade J R. Solid State Ionics, 1995, 78(1-2), 87. 44 Bi L, Fabbri E, Sun Z Q, et al. Solid State Ionics, 2011, 196(1), 59. 45 Zunic M, Radojkovic A, Savic S M. Ceramics International, 2013, 39(3), 2631. 46 Bi L, Fang S M, Tao Z T, et al. Journal of the European Ceramic Society, 2009, 29(12), 2567. 47 Zuo C, Dorris S E, Balachandran U, et al. Chemistry of Materials, 2006, 18(19), 4647. 48 Niwa E, Kondo K, Aoki M, et al. Materials Research Bulletin, 2019, 109, 213.