Enhanced Thermoelectric Properties in Pb-alloyed Cubic Phase AgBiSe2 via I Doping
LIU Xiaocun1,*, PAN Mingyan2
1 Department of Materials Science and Engineering, Shandong Jiaotong University, Jinan 250300, China 2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract: Thermoelectric materials, which can achieve direct conversion between electricity and heat, have attracted increasing attention in recent years. In this paper, polycrystalline bulk samples of Ag1-x/2Bi1-x/2PbxSe2(x=0, 0.2, 0.25, 0.3)were prepared from high purity elements and densified by spark plasma sintering. The X-ray diffraction analysis indicates that the alloying of Pb element can lead to the phase transition from hexagonal phase to cubic phase at room temperature. The participation of Pb can result in the decrease of lattice thermal conductivity and further enhance thermoelectric properties. Due to the relatively low lattice thermal conductivity and high ZT value, Ag0.875Bi0.875Pb0.25Se2 is selected as matrix material, and its thermoelectric properties are further enhanced via I doping. The ZT value of Ag0.875Bi0.875Pb0.25Se1.97I0.03 at 773 K is about 0.72, which is nearly two times higher than that of pristine AgBiSe2.
1 Tan G, Zhao L D, Kanatzidis M G. Chemical Review, 2016, 116(19), 12123. 2 Slack G A. CRC handbook of thermoelectrics, Pollock Industries, Inc., USA, 1995. 3 Xie H, Wang H, Pei Y, et al. Advanced Functional Materials, 2013, 23(41), 5123. 4 Fu C, Bai S, Liu Y, et al. Nature Communications, 2015, 6(1), 8144. 5 Wang Y, Ma Q, Jia J, et al. Materials Reports, 2019, 33(Z1), 403(in Chinese). 王怡心, 马勤, 贾建刚, 等. 材料导报, 2019, 33(Z1), 403. 6 Liu H, Shi X, Xu F, et al. Nature Materials, 2012, 11(5), 422. 7 Xiao C, Xu J, Li K, et al. Journal of American Chemical Society, 2012, 134(9), 4287. 8 Lin J, Xie H, Wu Z, et al. Materials Reports A:Review Papers, 2020, 34(4), 7071(in Chinese). 林锦豪, 谢华清, 吴子华, 等. 材料导报:综述篇, 2020, 34(4), 7071. 9 Liu K, Xia S. Journal of Solid State Chemistry, 2019, 270, 252. 10 Shuai J, Mao J, Song S, et al. Materials Today Physics, 2017, 1, 74. 11 Shen L X, Chen J L, Li D C, et al. Materials Reports B:Research Papers, 2020, 34(4), 8136(in Chinese). 申兰先, 陈家莉, 李德聪, 等. 材料导报:研究篇, 2020, 34(4), 8136. 12 Hoang K, Mahanti S D, Salvador J R, et al. Physical Review Letters, 2007, 99, 156403. 13 Pan L, Berardan D, Dragoe N. Journal of American Chemical Society, 2013, 135(13), 4914. 14 Liu X, Jin D, Liang X. Applied Physics Letters, 2016, 109(13), 133901. 15 Wu H J, Chen S W, Ikeda T, et al. Acta Materialia, 2012, 141, 6144. 16 Jang H, Abbey S, Nam W H, et al. Journal of Materials Chemistry A, 2021, 9(8), 4648. 17 Goto Y, Nishida A, Nishiate H, et al. Dalton Transactions, 2018, 47(8), 2575. 18 Guin S N, Srihari V, Biswas K. Journal of Materials Chemistry A, 2014, 3(2), 648. 19 Parker D S, May A, Singh D. Physical Review Applied, 2015, 3(6), 064003. 20 Feng Z, Zhang X, Wang Y, et al. Physical Review B, 2019, 99(15), 155203. 21 Li S, Feng Z, Tang Z, et al. Chemistry of Materials, 2020, 32(8), 3528. 22 Bernges T, Peilstöcker J, Dutta M, et al. Inorganic Chemistry, 2019, 58(14), 9236. 23 Sudo K, Goto Y, Sogabe R, et al. Inorganic Chemistry, 2019, 58(11), 7628. 24 Zhu H, Zhao T, Zhang B, et al. Advanced Energy Materials, 2020, 11(5), 2003304. 25 Shklovskii B I, Efros A L. Electronic properties of doped semiconductors, Springer, Germany, 1984. 26 Zhao L D, He J, Berardan D, et al. Energy & Environmental Science, 2014, 7(9), 2900. 27 May A F, Singh D J, Snyder G J. Physical Review B, 2009, 79(15), 153101. 28 Sootsman J R, Chung D Y, Kanatzidis M G. Angewandte Chemie International Edition, 2009, 48(46), 8616.