Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21060082-5    https://doi.org/10.11896/cldb.21060082
  无机非金属及其复合材料 |
Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能
刘小村1,*, 潘明艳2
1 山东交通学院材料科学与工程系,济南 250300
2 中国科学院上海光学精密机械研究所,上海 201800
Enhanced Thermoelectric Properties in Pb-alloyed Cubic Phase AgBiSe2 via I Doping
LIU Xiaocun1,*, PAN Mingyan2
1 Department of Materials Science and Engineering, Shandong Jiaotong University, Jinan 250300, China
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
下载:  全 文 ( PDF ) ( 7832KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电材料可以实现温差和电能的相互转换,因而近年来备受关注。本工作利用高温固相反应制备Ag1-x/2Bi1-x/2PbxSe2(x=0, 0.2, 0.25, 0.3)多晶料,并借助放电等离子烧结成型得到致密样品。X射线衍射分析结果表明:在室温条件下,Pb固溶可导致AgBiSe2由六方相转变为立方相。Pb元素的引入还可以降低材料的晶格热导率,有利于提高材料的热电性能。由于Ag0.875Bi0.875Pb0.25Se2兼具较低的晶格热导率和较高的热电优值(ZT),通过Ⅰ掺杂可进一步优化其电输运性能,进而提高材料的热电性能。Ag0.875Bi0.875Pb0.25Se1.97I0.03在773 K时的热电优值约为0.72,接近未掺杂AgBiSe2热电优值的两倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘小村
潘明艳
关键词:  热电材料  热导率  塞贝克系数  电导率    
Abstract: Thermoelectric materials, which can achieve direct conversion between electricity and heat, have attracted increasing attention in recent years. In this paper, polycrystalline bulk samples of Ag1-x/2Bi1-x/2PbxSe2(x=0, 0.2, 0.25, 0.3)were prepared from high purity elements and densified by spark plasma sintering. The X-ray diffraction analysis indicates that the alloying of Pb element can lead to the phase transition from hexagonal phase to cubic phase at room temperature. The participation of Pb can result in the decrease of lattice thermal conductivity and further enhance thermoelectric properties. Due to the relatively low lattice thermal conductivity and high ZT value, Ag0.875Bi0.875Pb0.25Se2 is selected as matrix material, and its thermoelectric properties are further enhanced via I doping. The ZT value of Ag0.875Bi0.875Pb0.25Se1.97I0.03 at 773 K is about 0.72, which is nearly two times higher than that of pristine AgBiSe2.
Key words:  thermoelectric material    thermal conductivity    Seebeck coefficient    electrical conductivity
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TB321  
基金资助: 国家自然科学基金青年基金(21601021);山东交通学院博士启动基金(BS2018027)
通讯作者:  *刘小村,山东交通学院副教授。2015年6月毕业于山东大学,获得材料物理与化学专业博士学位。主要研究方向为热电材料、固相合成化学和单晶生长。以第一或通信作者身份在ACS Appl. Mater. Inter.、Inorg. Chem.、Appl. Phys. Lett.发表论文20余篇。liuxiaocunde@163.com   
引用本文:    
刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
LIU Xiaocun, PAN Mingyan. Enhanced Thermoelectric Properties in Pb-alloyed Cubic Phase AgBiSe2 via I Doping. Materials Reports, 2023, 37(5): 21060082-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060082  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21060082
1 Tan G, Zhao L D, Kanatzidis M G. Chemical Review, 2016, 116(19), 12123.
2 Slack G A. CRC handbook of thermoelectrics, Pollock Industries, Inc., USA, 1995.
3 Xie H, Wang H, Pei Y, et al. Advanced Functional Materials, 2013, 23(41), 5123.
4 Fu C, Bai S, Liu Y, et al. Nature Communications, 2015, 6(1), 8144.
5 Wang Y, Ma Q, Jia J, et al. Materials Reports, 2019, 33(Z1), 403(in Chinese).
王怡心, 马勤, 贾建刚, 等. 材料导报, 2019, 33(Z1), 403.
6 Liu H, Shi X, Xu F, et al. Nature Materials, 2012, 11(5), 422.
7 Xiao C, Xu J, Li K, et al. Journal of American Chemical Society, 2012, 134(9), 4287.
8 Lin J, Xie H, Wu Z, et al. Materials Reports A:Review Papers, 2020, 34(4), 7071(in Chinese).
林锦豪, 谢华清, 吴子华, 等. 材料导报:综述篇, 2020, 34(4), 7071.
9 Liu K, Xia S. Journal of Solid State Chemistry, 2019, 270, 252.
10 Shuai J, Mao J, Song S, et al. Materials Today Physics, 2017, 1, 74.
11 Shen L X, Chen J L, Li D C, et al. Materials Reports B:Research Papers, 2020, 34(4), 8136(in Chinese).
申兰先, 陈家莉, 李德聪, 等. 材料导报:研究篇, 2020, 34(4), 8136.
12 Hoang K, Mahanti S D, Salvador J R, et al. Physical Review Letters, 2007, 99, 156403.
13 Pan L, Berardan D, Dragoe N. Journal of American Chemical Society, 2013, 135(13), 4914.
14 Liu X, Jin D, Liang X. Applied Physics Letters, 2016, 109(13), 133901.
15 Wu H J, Chen S W, Ikeda T, et al. Acta Materialia, 2012, 141, 6144.
16 Jang H, Abbey S, Nam W H, et al. Journal of Materials Chemistry A, 2021, 9(8), 4648.
17 Goto Y, Nishida A, Nishiate H, et al. Dalton Transactions, 2018, 47(8), 2575.
18 Guin S N, Srihari V, Biswas K. Journal of Materials Chemistry A, 2014, 3(2), 648.
19 Parker D S, May A, Singh D. Physical Review Applied, 2015, 3(6), 064003.
20 Feng Z, Zhang X, Wang Y, et al. Physical Review B, 2019, 99(15), 155203.
21 Li S, Feng Z, Tang Z, et al. Chemistry of Materials, 2020, 32(8), 3528.
22 Bernges T, Peilstöcker J, Dutta M, et al. Inorganic Chemistry, 2019, 58(14), 9236.
23 Sudo K, Goto Y, Sogabe R, et al. Inorganic Chemistry, 2019, 58(11), 7628.
24 Zhu H, Zhao T, Zhang B, et al. Advanced Energy Materials, 2020, 11(5), 2003304.
25 Shklovskii B I, Efros A L. Electronic properties of doped semiconductors, Springer, Germany, 1984.
26 Zhao L D, He J, Berardan D, et al. Energy & Environmental Science, 2014, 7(9), 2900.
27 May A F, Singh D J, Snyder G J. Physical Review B, 2009, 79(15), 153101.
28 Sootsman J R, Chung D Y, Kanatzidis M G. Angewandte Chemie International Edition, 2009, 48(46), 8616.
[1] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[2] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[3] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[4] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[5] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[6] 董源, 徐桂英. GeTe热电材料的研究和进展[J]. 材料导报, 2022, 36(3): 20080307-10.
[7] 郭靖, 孟永强, 孙金峰, 张少飞. 高导热金刚石/铜复合材料的制备与界面调控研究进展[J]. 材料导报, 2022, 36(15): 20090233-7.
[8] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[9] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[10] 宋金涛, 刘海涛, 宋克兴, 安士忠, 程楚, 华云筱, 周延军, 张凌亮, 王国杰, 田安福, 杨璐瑶. 稀土铈与磷相互作用对纯铜晶粒尺寸和导电性能的影响[J]. 材料导报, 2021, 35(z2): 329-332.
[11] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[12] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[13] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[14] 江文正, 章卫钢, 子绚, 刘贤淼, 张文标, 李文珠. 二次炭化温度对竹炭导电性能及结构的影响[J]. 材料导报, 2021, 35(8): 8023-8027.
[15] 刘静, 温澄, 甘俊旗, 罗干, 杜军. 合金元素对纯铝导电性能的影响机制[J]. 材料导报, 2021, 35(24): 24101-24106.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed