Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24101-24106    https://doi.org/10.11896/cldb.20100289
  金属与金属基复合材料 |
合金元素对纯铝导电性能的影响机制
刘静, 温澄, 甘俊旗, 罗干, 杜军
华南理工大学材料科学与工程学院,广州 510640
Influencing Mechanisms of Alloying Elements on the Electrical Conductivity of Pure Aluminum
LIU Jing, WEN Cheng, GAN Junqi, LUO Gan, DU Jun
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 2717KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验研究了21种合金元素对纯铝导电性能的影响,并综合分析其影响因素及机制。研究结果表明,合金元素会导致纯铝的电导率下降,且不同元素造成的下降幅度存在差异。铝基体中固溶度极低的合金化元素的影响较小,而溶解度较大的固溶型元素的影响则相对较大,且电导率下降幅度与元素类型密切相关。固溶型元素对铝合金电阻率的影响是固溶原子与基体Al原子的原子半径差(Δr)、化合价差异(ΔZ)、核外电子分布和凝固反应类型等因素的共同作用。其中,化合价差异和凝固反应类型起主要控制作用,其次是核外电子分布。过渡族元素具有化合价差异大、凝固过程为包晶反应且外层电子空位数多等特性,导致纯铝的电导率快速降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘静
温澄
甘俊旗
罗干
杜军
关键词:  铝合金  电导率  化合价  原子半径  核外电子排布    
Abstract: In this study, 21kinds of alloying elements were chosen and their effects on electrical conductivity of pure aluminum were experimentally stu-died. The influencing factors and mechanisms were comprehensively analyzed. Ordinally, the electrical conductivity of aluminum alloys show a decreasing trend with increasing in the addition content of alloying elements. The elements with little or no solid solubility in α-Al matrix have rela-tively small effect on the electrical conductivity. However, the elements which were solidly soluble in α-Al matrix have a relatively large effect on the conductivity, and the magnitude of the decline is closely related to the elements' type. The effect of solute elements on the resistivity of aluminum alloys was affected by the combined action of the atomic radius differences(Δr) between the solute atoms and the matrix Al atom, the differences in valence, the extra-nuclear electron distribution and the type of solidification reaction. Among them, valence differences and the type of solidification reaction played major controlling roles, followed by the extra-nuclear electron distribution. The transitional elements had characto-ristics, such as large differences in valence and peritectic reaction with Al, as well as many outer electron vacancies, which led to the rapid decrease of conductivity.
Key words:  aluminum alloy    electrical conductivity    valence    atomic radius    extranuclear electron
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TG146.2  
基金资助: 企业委托项目(20180358)
通讯作者:  jundu@scut.edu.cn   
作者简介:  刘静,华南理工大学材料科学与工程专业学术型硕士。2014年9月至2018年6月,在重庆大学获得材料科学与工程专业工学学士学位,毕业后被推免至华南理工大学攻读硕士学位。研究方向主要为轻合金的组织控制和机理分析。杜军,工学博士,教授/博士研究生导师。2003年博士毕业于吉林大学材料加工工程专业,毕业后进入华南理工大学工作至今。2006年到2008年在日本名古屋大学进行博士后研究工作。2007年晋升副教授,2012年晋升教授。先后承担6门各类课程,年均学时100以上。主要从事轻合金组织控制与表面改性领域的研究工作,具体研究方向包括:(1)新型金属基复合材料制备及其组织和性能控制;(2)铝(镁)轻合金表面改性技术及其机制;(3)铝(镁)轻合金组织调控技术及其机制;(4) 高导热与高耐蚀铝(镁)轻合金设计与开发;(5)再生铝合金组织控制与保级利用技术开发。主持和参与各类科研项目近20项,发表论文80余篇,三大索引论文50余篇,申请专利20余项,已获得授权16项。
引用本文:    
刘静, 温澄, 甘俊旗, 罗干, 杜军. 合金元素对纯铝导电性能的影响机制[J]. 材料导报, 2021, 35(24): 24101-24106.
LIU Jing, WEN Cheng, GAN Junqi, LUO Gan, DU Jun. Influencing Mechanisms of Alloying Elements on the Electrical Conductivity of Pure Aluminum. Materials Reports, 2021, 35(24): 24101-24106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100289  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24101
1 Yan K H. Research on the material of high conductivity hard drawn aluminum alloy. Master's Thesis, North China Electric Power University, China, 2016(in Chinese).
严康骅. 高导电率硬铝导体材料研究. 硕士学位论文, 华北电力大学(北京), 2016.
2 Cao H, Sun Q, Pu Q, et al. Vacuum, 2020, 172, 109063.
3 Su C Y, Li D J, Luo A A, et al. Journal of Alloys and Compounds, 2018,747, 431.
4 Horikoshi T. Hitachi Cable, 2020, 25, 31.
5 Tang R Z, Tian R Z. Binary alloy phase diagrams and crystal structure of intermediate phase, Central South University Press, China, 2009(in Chinese).
唐仁政, 田荣璋. 二元合金相图及中间相晶体结构, 中南大学出版社, 2009.
6 Klemens P G, Williams R K J M R. International Metals Reviews, 1986, 31, 197.
7 Wang S R, Ma R, Wang Y Z, et al. Transactions of Nonferrous Metals Society of China, 2012, 22, 1264.
8 Caceres C H, Davidson C J, Griffiths J R, et al. Metallurgical and Materials Transactions A, 1999, 30, 2611.
9 Farahany S, Ourdjini A, Bakhsheshi-Rad H R. Transactions of Nonferrous Metals Society of China, 2016, 26, 28.
10 Lin C, Wu S S, Lu S L, et al. Transactions of Nonferrous Metals Society of China, 2019, 29, 253.
11 Qiu K, Wang R Z, Peng C Q, et al. Transactions of Nonferrous Metals Society of China, 2015, 25, 3546.
12 Lin G Y, Li K, Feng D, et al. Transactions of Nonferrous Metals Society of China, 2019, 29, 1592.
13 Samuel A M, Doty H W, Valtierra S, et al. International Journal of Metal Casting, 2016, 11(3),1.
14 Li Q L, Zhu Y Q, Zhao S, et al. Intermetallics, 2020, 120, 9.
15 Pan H, Pan F, Yang R, et al. Journal of Materials Science, 2014, 49, 3107.
16 Noble B, Pike T J. Journal of Physics F: Metal Physics, 1981, 49, 587.
17 Mujahid M, Engel N N, Chia E H J S M. Scripta Metallurgica, 1979, 13, 887.
18 Schindler A I, Salkovitz E I J P R. Physical Review, 1953, 91, 1320.
19 Klemens P G. Australian Journal of Physics, 1954, 7, 57.
20 Raynor G V. The physical metallurgy of magnesium and its alloys, Pergamon Press, Britain, 1959.
[1] 宋金涛, 刘海涛, 宋克兴, 安士忠, 程楚, 华云筱, 周延军, 张凌亮, 王国杰, 田安福, 杨璐瑶. 稀土铈与磷相互作用对纯铜晶粒尺寸和导电性能的影响[J]. 材料导报, 2021, 35(z2): 329-332.
[2] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[3] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
[4] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[5] 秦芳诚, 齐会萍, 李永堂, 刘崇宇, 亓海全, 康跃华. 铝合金环形零件形/性一体化制造技术[J]. 材料导报, 2021, 35(9): 9049-9058.
[6] 江文正, 章卫钢, 子绚, 刘贤淼, 张文标, 李文珠. 二次炭化温度对竹炭导电性能及结构的影响[J]. 材料导报, 2021, 35(8): 8023-8027.
[7] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[8] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[9] 朱振宇, 涂浩, 吴长军, 彭浩平, 王建华, 苏旭平. 熔铸工艺对2618铝合金中难溶相尺寸与分布的影响[J]. 材料导报, 2021, 35(4): 4129-4133.
[10] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[11] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
[12] 贺春花, 李红萍, 叶凌英, 刘胜胆, 唐建国. 晶粒组织对7150铝合金抗腐蚀性能的影响[J]. 材料导报, 2021, 35(22): 22109-22114.
[13] 秦丰, 李睿, 张春波, 周军, 赵衍华. 铝/钢异种金属轴向摩擦焊研究现状[J]. 材料导报, 2021, 35(21): 21228-21235.
[14] 赵华星, 孙晓峰, 宋巍, 李占明, 李德民. 微弧氧化技术在铝合金腐蚀防护中的应用研究与发展[J]. 材料导报, 2021, 35(21): 21236-21242.
[15] 杨海峰, 赵洪运, 许欣欣, 孙广达, 周利, 赵慧慧, 刘会杰. 静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能[J]. 材料导报, 2021, 35(20): 20045-20051.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed