Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8108-8115    https://doi.org/10.11896/cldb.19120115
  金属与金属基复合材料 |
不同热处理工艺对6061铝合金塑性和硬度的影响
丁凤娟1, 贾向东1, 洪腾蛟2, 徐幼林1, 胡喆1
1 南京林业大学机械电子工程学院,南京 210037
2 安徽科技学院机械工程学院,凤阳 233100
Influence of Different Heat Treatment Processes on Plasticity and Hardness of 6061 Aluminum Alloy
DING Fengjuan1, JIA Xiangdong1, HONG Tengjiao2, XU Youlin1, HU Zhe1
1 College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
2 College of Mechanical Engineering, Anhui Science and Technology University, Fengyang 233100,China
下载:  全 文 ( PDF ) ( 8900KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不经过特殊处理的铝合金材料在常温条件下属于低塑性、难变形材料,制约其在工业中的应用。以6061-T6铝合金板材为研究对象,通过单向拉伸试验、维氏显微硬度测试和金相试验等方法分析了不同热处理温度、保温时间和冷却方式等热处理工艺参数对6061铝合金塑性性能和硬度的影响规律。研究结果表明,再结晶发生的程度是影响6061铝合金塑性性能的主要原因。热处理加热温度在410~590 ℃范围内,保温时间为2 h,采用空冷(AC)冷却条件,6061铝合金的塑性性能随热处理温度的升高呈现出波动增加,在560 ℃时达到最大值22.92%;而其硬度则表现出先降后升的变化趋势。在同一热处理温度和冷却方式条件下,延长保温时间,6061铝合金的塑性性能先增大后减小,总体呈上升趋势,而硬度则先降后升。在同一热处理温度和保温时间条件下,空冷(AC)、炉冷(FC)和水冷(WQ)三种不同的冷却方式对6061铝合金塑性性能的影响不大,但对其硬度的影响较大。在所选试验条件下,综合考虑6061铝合金的力学性能指标,热处理加热温度为560 ℃、保温时间为4 h、水冷方式下能够获得较为理想的强度、硬度和塑性性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁凤娟
贾向东
洪腾蛟
徐幼林
胡喆
关键词:  6061铝合金  热处理工艺  硬度  塑性性能    
Abstract: Aluminum alloy materials without special treatment belong to low-plasticity and difficult-to-deform materials under normal temperature conditions, which restricts its application in industry. Therefore, taking 6061-T6 aluminum alloy sheet as the research object, the effects of diffe-rent heat treatment process parameters such as heating temperature, holding time and cooling mode on the plasticity and hardness of 6061 aluminum alloy were studied by means of uniaxial tensile test, Vickers hardness test and metallographic tests. The results show that the degree of recrystallization is the main factors affecting the plastic properties of 6061 aluminum alloy. When the heat treatment heating temperature is range from 410 ℃ to 590 ℃, and the holding time is 2 h, and under air cooling (AC) conditions, the plastic properties of 6061 aluminum alloy had fluctuating increase trend with the rise of heating temperatures, reaching maximum value of 22.92% at 560 ℃. While the hardness of the aluminum alloy showed a trend of decreased first and then increased. Under the same heat treatment temperature and cooling conditions, extending the hol-ding time, the plasticity of the 6061 aluminum alloy first increased and then decreased, and the overall trend was upward, while change tendency of hardness shows it down first and then up. Under the same heat treatment temperature and holding time, different cooling methods, such as air cooling(AC), furnace cooling(FC) and water quenching(WQ), have little effect on the plastic properties of 6061 aluminum alloy, but it have a greater impact on the hardness. Under the selected test conditions, considering the mechanical properties of 6061 aluminum alloy comprehensively, the heat treatment temperature is 560 ℃, holding time is 4 h, and the ideal strength, hardness and plasticity can be obtained under water quenching.
Key words:  6061 aluminum alloy    heat treatment process    hardness    plasticity property
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TG146.2  
基金资助: 江苏省高等学校自然科学基金(18KJB460020);南京林业大学高水平(高等教育)科学基金(GXL2018020);南京林业大学青年科技创新基金(CX2018027)
通讯作者:  Jiaxd.good@163.com   
作者简介:  丁凤娟,南京林业大学机械工程博士研究生,工程师职称,主要从事机械结构设计及理论研究。
贾向东,南京林业大学机械电子工程学院,讲师。2017年毕业于燕山大学,获得工学博士学位。主要从事管、板材塑性成形工艺及理论研究和锻造成形工艺及理论研究。
引用本文:    
丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
DING Fengjuan, JIA Xiangdong, HONG Tengjiao, XU Youlin, HU Zhe. Influence of Different Heat Treatment Processes on Plasticity and Hardness of 6061 Aluminum Alloy. Materials Reports, 2021, 35(8): 8108-8115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120115  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8108
1 . Transactions of the KSME,2018,42(7),637.
2 Barnwal V K, Raghavan R, Tewari A, et al. Materials Science & Engineering A,2017,679,56.
3 Liu Q L, Liu Y Z, Du L, et al. The Chinese Journal of Nonferrous Metals,2012,22(2),350(in Chinese).
刘丘林,刘允中,杜良,等.中国有色金属学报,2012,22(2),350.
4 Feng Y C, Li X L, Liu J, et al. Materials for Mechanical Engineering,2011,35(3),18(in Chinese).
冯银成,李星落,刘杰,等.机械工程材料,2011,35(3),18.
5 Liu X G, Wang G J, Meng D L, et al. Transactions of Materials and Heat Treatment,2016,37(7),77(in Chinese).
刘鑫刚,王国军,孟冬凝,等.材料热处理学报,2016,37(7),77.
6 Xu K S. Research of homogenization heat treatment and TIG surface remelting of 6061 aluminum alloy. Master's Thesis, Jilin University, China,2015(in Chinese).
徐开升.6061铝合金成分均匀化及表面TIG重熔处理研究.硕士学位论文,吉林大学,2015.
7 Jin B R, Ha D W, Jeong C Y. Materials Transactions,2019,60(5),815.
8 Zhang P, Li Z M, Liu B L, et al. Journal Of Materials Science & Technology,2017,33(4),367.
9 Xu X J, Jiang Z, Mao Q, et al. Materials Research Express, DOI: 10.1088/2053-1591/ab0876.
10 Liu L, Zhou H T, Zhou N, et al. Materials Reports B: Research Papers,2018,32(12),4292.
刘磊,周海涛,周楠,等.材料导报:研究篇,2018,32(12),4292.
11 Duan X G, Mi Z L, Jiang H T, et al. Materials Research Express, DOI: 10.1088/2053-1591/aafba0.
12 Li S L, Huang Z Q, Jiang F L, et al. Transaction of Materials and Heat Treatment,2013,34(5),131(in Chinese).
李慎兰,黄志其,蒋福利,等.材料热处理学报,2013,34(5),131.
13 Li J H, Li F G, Ma X K, et al. Advanced Engineering Materials, https://doi.org/10.1002/adem.201701155.
14 Froeck H, Milkereit B, Wiechmann P, et al. Metals,2018,8(4),265.
15 Li C W, Pan X Z, Liu L L, et al. Heat Treatment of Metals,2010,35(6),59(in Chinese).
李彩文,潘学著,刘露露,等.金属热处理,2010,35(6),59.
16 Xu C C, He H, Yu W Y, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2019,744,28.
17 Kemsies R H, Milkereit B, Wenner S, et al. Materials & Design,2018,146(96),96.
18 Li Y, Liu Z W, Li L X. Journal of Plasticity Engineering,2013,20(4),92(in Chinese).
李艳,刘志文,李落星.塑性工程学报,2013,20(4),92.
19 Utsunomiya H, Tada K, Matsumoto R, et al. Journal of Nanoscience and Nanotechnology,2018,18(3),2200.
20 Ma X, Zhao Y F, Zhao X J, et al. Journal of Alloys and Compounds,2019,770,755.
21 Cavazos J L, Colas R. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2003,363(1-2),171.22 Fan Z Z, Lei X C, Wang L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2018,730,317.
23 Liu H Q, Xu X C, Wu F. Transactions of Materials and Heat Treatment,2015,36(11),47(in Chinese).
刘海全,许晓嫦,吴峰.材料热处理学报,2015,36(11),47.
24 Naronikar A H, Jamadagni A H N, Simha A, et al. In: International Conference on Advances in Materials and Manufacturing Applications (IConAMMA). Bengaluru, India, 2017,pp.24240.
25 Wang X F, Shi T Y, Wang H B, et al. Materials Research Express, DOI: 10.1088/2053-1591/ab08d7.
[1] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[2] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[3] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[4] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[5] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[6] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[7] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[8] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[9] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[10] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[11] 王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
[12] 热焱, 邱克强, 李东和, 丁韧, 王梅, 徐慧, 徐颖. 高硬度Mg-5Al-2Sn-5Ca镁合金在铸态与热处理后的蠕变行为[J]. 材料导报, 2020, 34(12): 12076-12082.
[13] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[14] 汤鹏君, 李旭强, 翟海民, 李文生. 不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能[J]. 材料导报, 2020, 34(12): 12115-12121.
[15] 邓杰, 孙新军, 张涛, 宋新莉, 梁小凯, 马玉喜, 向志东. 冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响[J]. 材料导报, 2020, 34(10): 10126-10131.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed